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FOREWORD

The report on the introduction to non-linear mechanics as a whole

falls into four major divisions.

Part I, published as David Taylor Model Basin Report 534 under date
of December 1944, is concerned with the topological methods; its presentation

substantially follows the "Theory of Oscillations" by Andronow and Chaikin.

The material is slightly rearranged, the text is condensed, and a number of

figures in this report were taken from the book. Chapter V, concerning

Li6nard's analysis, was added since it constitutes an important generaliza-

tion and establishes a connection between the topological and the analytical

methods, which otherwise might appear as somewhat unrelated.

Part II, published as David Taylor Model Basin Report 546 under date

of September 1945, gives an outline of the three principal analytical methods,
those of Poincarg, Van der Pol, and Kryloff-Bogoliuboff.

Part III, published as David Taylor Model Basin Report 558 under

date of May 1946, deals with the complicated phenomena of non-linear resonance

with its numerous ramifications such as internal and external subharmonic res-

onance, entrainment of frequency, parametric excitation, and the like.
Part IV, published here, reviews the interesting developments of

Mandelstam, Chaikin, and Lochakow in the theory of relaxation oscillations for
large values of the parameter p.

Part IV also contains a subject index to all four parts of this

treatise.
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INTRODUCTION TO NON-LINEAR MECHANICS

PART IV

RELAXATION OSCILLATIONS*

127. INTRODUCTORY REMARKS

The term relaxation oscillations, introduced by Van der Pol (I)t (2)

and commonly used at present, generally designates self-excited oscillations

exhibiting quasi-discontinuous features. Because of the importance of such

oscillations in applications in connection with the so-called "sweep circuits"

in electronics, television, and allied fields, an extensive literature exists

on this subject, References (3) through (9). Ph. LeCorbeiller (10) gives an

interesting survey of various devices, both mechanical and electrical, by

which these phenomena can be demonstrated; some of these devices have been

known for centuries.

The characteristic feature of these phenomena is that a certain

physical quantity (such as coordinate, velocity, etc., in mechanical problems,

and charge, current, etc., in electrical problems) exists on two levels, re-

maining on each level alternately for a relatively long time but passing from

one level to the other so rapidly that in the idealized representation the

passage may be considered as instantaneous. A few examples taken from the

paper by LeCorbeiller will illustrate these phenomena.

Figure 127.1 shows a device consisting of a container C, of the form

shown, fastened to a support R capable of rotating about an axis A, perpendic-

ular to the plane of the paper, and provided with a weight W sufficient to

hold the system against the stop S. The container is slowly filled with water,

and at the instant when the moment due to the weight of the water becomes

greater than the moment due to the weight W, the system tumbles over against

another stop S'. The container then

empties, and the weight W brings the

system back against the stop S, af-

ter which the filling period begins

again, and so on. In this system the A

two levels, previously mentioned, s s

are the angles 0 and 0' at which the

system is constrained by the stops Figure 127.1

* The text of Part IV follows the presentation in "Theory of Oscillations," by Andronow and Chaikin,
Moscow, (Russian), 1937. A complete bibliography on the subject of relaxation oscillations appears
in this volume.

t Numbers in parentheses indicate references on page 66 of this report.
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S and S' respectively, and the representation of this system in the (O,t)-

plane appears as a periodic rectangular ripple with the length of its hori-

zontal stretches determined by the rates of filling and of evacuation of C.

Another familiar example is the charging of a capacitor shunted by

a gaseous conductor such as a neon lamp. During the charging period the capac-

itor's voltage gradually rises. At the point of ionization of the gaseous

conductor, the neon lamp flashes and the capacitor is suddenly discharged,

whereupon the gaseous conduction ceases abruptly and the charging period be-

gins anew. Here, again, there are two levels, the voltage Vimmediately before

the discharge strikes and the voltage V2 immediately after the extinction of

the discharge. The transition from V2 to V1 is gradual, but the inverse tran-

sition from V to V2 is quasi-discontinuous. A phenomenon of this kind is

represented in the (V,t)-plane by a so-called "saw-tooth" curve.

It was shown in Section 37, Part I, that a similar situation exists

for large values of the parameter p in the Van der Pol equation. Figure 37.1C

shows quasi-discontinuous changes in the variable x(t) between the two regions

in which it changes but little.

When these periodic phenomena are represented in the phase plane of

the variable undergoing rapid changes, they appear as closed curves with reg-

ions of very large curvature, such as the curves shown in Figures 37.2c and

37.3c. By idealizing these very rapid changes as discontinuous changes, closed

trajectories of this kind become piecewise analytic curves "closed" by the

discontinuous stretches.

Available analytical methods are inadequate for a rigorous treatment

of these phenomena. In fact, all analytical methods presuppose that the param-

eter p appearing in the basic quasi-linear equation

+ x = P=f(x,x) [127.1]

is very small. On the contrary, in some of these oscillations, which are ex-

pressible by Van der Pol's differential equation, this parameter is large.

More specifically, in Figures 37.1c, 37.2c, and 37.3c, referred to above, the

value of the parameter # is 10.

Attempts have been made to extend the analytical methods to oscil-

lations in which p is large. In Section 36 it was shown that Li6nard succeed-

ed in obtaining certain conclusions regarding the qualitative aspect of the

phase trajectories when p was very large. N. Levinson (11) extended the proof

of the existence of closed trajectories to cover oscillations in which p is

not small. In a recent publication (12) J.A. Shohat has indicated a form of

series expansion formally satisfying the Van der Pol equation when p is large.

These various attempts, however, did not result in any complete analytical

;IgWL~ar)i~~_~_ ~~ ~ igh.x



theory comparable to the one which has been studied in Part II in connection
with oscillations in which p is small.

Moreover, as will appear below, not all known relaxation oscilla-
tions seem to belong to the group of equations [127.1] of which the Van der
Pol equation is a particular example. More specifically, it will be shown in
Chapter XXI that relaxation oscillations are frequently observed in systems
which are amenable to representation by differential equations of the first
order which do not admit any analytic periodic solutions for the simple reason
that these equations do not possess singularities, without which no closed
analytic trajectories can exist; see Section 25. These difficulties led the
school of physicists under the leadership of L. Mandelstam and N. Papalexi to
evolve a theory, called by its authors the discontinuous theory of relaxation
oscillations, whose exposition and applications will form the principal topic
of Part IV.

The use of the concept of mathematical discontinuities for the pur-
pose of describing a rapidly changing dynamical process, at least during cer-
tain instants of its evolution in time, is not new. It is recalled that the
classical theory of mechanical impacts uses precisely the discontinuous method
by assuming an infinitely small duration of the impact process during which
the dynamics of the process is entirely ignored, and the "initial" and "ter-
minal" conditions are correlated on the basis of certain additional informa-
tion not contained in the differential equations themselves. This permits
obtaining the correct overall effect of the impact without knowledge of its
details. For an elastic impact, such additional information is supplied by
the theorems of momentum and kinetic energy; to this information is added, for
non-elastic impacts, the so-called coeffi-
cient of restitution, an empirical factor

characterizing the loss of energy during

the impact. This coefficient depends on

the material of which the colliding bodies w

are composed. 2u

One can imagine a discontinuous (a)

periodic motion generated by impacts from

the following example given by Andronow

and Chaikin (13). Let us assume that a

perfectly elastic ball rolls without fric-

tion on a horizontal plane and strikes

elastic walls WW perpendicular to the di-

rection of its motion, as shown in Figure

127.2a. With the usual discontinuous

treatment of mechanical impacts, the phase Figure 127.2

-4.
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trajectory of such motion is represented by a "closed curve" ABCDA, a rec-

tangle. On the branches AB and CD the motion is continuous with the constant

velocities i = ±vo, respectively; on the branches BC and DA, on the contrary,

it is discontinuous.

In the systems of Figures 127.1 and 127.2 we encounter periodic phe-

nomena having certain quasi-discontinuous features. The nature of these dis-

continuities in the two systems is, however, different. For the ball striking

the walls there exists a definite external actuation, the reaction of the con-

straint, the wall, applied to the dynamical system, the ball; this actuation

is properly "timed" by the distance 2a between the walls which determines the

"period" of the motion. On the contrary, no external impact excitation exists

during the discontinuities in the motion of the container shown in Figure

127.1. These discontinuities are due rather to a sudden loss of equilibrium

between the moment M, of the constant weight and that of the container Mc,

occurring at a certain critical value, M C = M W . The change of equilibrium

position from 0 to 0' is not instantaneous, of course, but in comparison with

the long periods of filling and evacuation of the container it may be consid-

ered as such in the idealized picture of the phenomenon. We can improve the

idealization by making the moment of inertia of the system (W,C) relatively

small; this will render the short time interval during which 0 varies still

shorter, which, in turn, makes the relative time intervals of filling and of

evacuation still longer.

We find it expedient to define as relaxation oscillations those

quasi-discontinuous oscillations in which the rapid changes between certain

levels of a physical quantity occur as the result of the loss of a certain

internal equilibrium in the system, and as impulse-excited oscillations those

quasi-discontinuous oscillations in which these rapid changes are due to the

action of certain external impulsive causes.

On this basis, the quasi-discontinuous oscillations of the container

shown in Figure 127.1 are of a relaxation type, whereas the ball rebounding

between the walls is an impulse-excited phenomenon. The essential difference

between the two types of oscillations is that in relaxation oscillations the

energy content stored in the system remains constant during the quasi-discon-

tinuous changes of certain variables, whereas in impulse-excited systems, on

the contrary, the energy content changes abruptly.

Impulse-excited oscillations do not require any particular addi-

tional information for their treatment, as will be seen in Chapter XXIV. For

relaxation oscillations proper (see Chapters XXI, XXII, and XXIII) it is

necessary to specify the conditions under which the discontinuities are bound

to occur in a system; it will be shown that the basic assumption given in



Section 130 provides a criterion sufficiently broad to cover all known types

of relaxation oscillations.

Finally, inasmuch as the representation of a rapidly changing proc-

ess by a mathematical discontinuity is always an idealization, it becomes

necessary to analyze the conditions under which this idealization is justified

in practice. In analyzing the behavior of the device shown in Figure 127.1,
we have noted that the change from the angle 0 to the angle 9' may be consid-

ered as quasi-discontinuous. The smaller the moment of inertia of the system,

the more accurate is the approximation. In mechanical systems, such as the

examples described above, it is obviously difficult to extend the hypothesis

by assuming that the moment of inertia is zero, but in electrical systems

neglect of one of the oscillatory parameters is a common practice. In both

types of systems, instead of a "full" differential equation of the second

order, the abbreviated or degenerate equation of the first order is frequently

employed. By using degenerate equations, numerous problems can be treated as

discontinuous in the phase plane; this appreciably simplifies their solution.

A simple example will show the application of degenerate equations

for this purpose. Let us consider an oscillating circuit shown in Figure 127.3
comprising an inductance L, a capacity C, and resistors R and r as shown. The

circuit may be closed on a source of d-c voltage by a switch S. It is useful

to specify certain idealizations which appear somewhat trivial but which will

be found to be of considerable importance in what follows.

We assume first that the left branch of the circuit ALRB has no ca-

pacity and that the right branch ACrB has no inductance. In other words, we

neglect the effect of small, parasitic, distributed capacities in the induc-

tance L and resistance R; likewise, we neglect the effect of a small induc-

tance accompanying the flow of current in the branch ACrB.

The second assumption

will be that the opening and clos- s
ing of S is instantaneous, that is,

occurs in an infinitely small time

interval (t - 0, t + 0).
Let us assume that we open L

and close the switch S at some fre-

quency. The process will then be

represented by a sequence of very

long intervals, when S is either

closed or opened, separated by in-

finitely short intervals of closing B

and opening. During the long inter-

vals there will generally be a Figure 127.3
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certain oscillatory process in the circuit (L,C,R+ r) describable by a dif-

ferential equation of the second order whose phase trajectories are spirals

converging toward a focal point, as we know from Section 5. The closing or

opening of S will disturb this process by introducing a certain transient.

Without any loss of generality we may consider the first closing of S at

t o = 0 and assume that for t < to the circuit was "dead." It is noted that,

at the instant of closing, the two circuits ALRB and ACrB are in parallel,

and the differential equations are

di dV
Ldi + Ri = E; rC dV + V = E [127.2]

dt dt

where E = 0 for t 5 to and E = constant for t 2 to. With these assumptions one

finds that

E( R) di E R
S - e  L  = eL

[127.3]
1 dV E

V = E 1 - e rc dt rC
dt rC

It is seen that for t = to the solutions of Equations [127.2], i(t) and V(t),

are continuous but not analytic in the sense that their first derivatives

undergo discontinuous jumps ; di= Noting that i = C weE dV

can take instead of V the variable i, and state that under the assumed ideal-
dt di

izations the functions - and ic undergo discontinuities E and E , respective-
dt dL r

ly. If one takes the plane of the variables (-j-,ic , the process occurring at

t = to is represented by a discontinuous jump of the representative point from

the origin to the point A whose coordinates are R and ; see Figure 127.4.

After the initial discontinuity the subsequent motion of the representative

point will follow a continuous trajectory AB which, as the transient dies out,

will eventually approach a damped oscillatory motion represented by a conver-

di gent spiral. If, at a later instant t = t,,

dt the switch is opened, another jump will oc-

A" cur, but this jump will generally not bring

, A the representative point back to the origin

T but to some other point A", and so on. It

E " is thus seen that in the phase plane of these

B ,/ particular variables d, i ) the history of

the system will be represented by a sequence
O1 E ic of disconnected, spiral arcs "joined" by dis-

continuous stretches such as OA, BA', .-.

A We thus obtain a piecewise analytic repre-

Figure 127.4 sentation of such a phenomenon.

"111M~ -
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It is important to emphasize once more that such a representation

of a quasi-discontinuous phenomenon by discontinuities in the phase plane of

certain variables is possible only because we have introduced certain ideal-

izations into the problem.

a. We consider the time interval during which rapid changes

occur as an infinitely short interval.

b. The effect of the parasitic parameters is neglected, which

enables us to deal with the degenerate equations [127.2] of the

first order instead of the full equations of the second order.

di
c. We have selected the dynamical variablesL- and ie which

are capable of undergoing discontinuities under Assumption b.

The necessity for Assumptions a and b is obvious. As for Assump-

tion c, it is clear that if one selected some other variables, for example,

i and V instead of and ic, discontinuous representation in such a phase
dt,

plane would be lost since these variables are continuous.

In the preceding discussion we have tacitly assumed an impulse-

excited phenomenon as previously defined. For a pure relaxation phenomenon

we must answer an additional question, namely, how to determine the instants

(in the time representation) or the points (in the phase-plane representation)

at which the discontinuity occurs in a system of this kind.

It is impossible to go beyond this point without formulating some

kind of a priori assumption, as will be explained in Section 130.

_ _^ _____ __~



CHAPTER XX

FUNDAMENTALS OF THE DISCONTINUOUS THEORY OF RELAXATION OSCILLATIONS

128. SOLUTIONS OF A DIFFERENTIAL EQUATION IN THE
NEIGHBORHOOD OF A POINT OF DEGENERATION

We now propose to investigate the nature of the solutions of a dif-

ferential equation of the second order with constant coefficients,for example,

ai + bi + kx = 0 [128.1]

when one of the coefficients approaches zero. In an electrical problem, a = L,

b = R, and k = 1/C; in a mechanical one, a = m (mass), b is the coefficient

of "velocity damping," and k is the spring constant.

First, if b approaches zero, one readily sees that the oscillatory

damped motion approaches the oscillatory undamped motion. We saw that in the

phase plane the solutions of [128.1] with b * 0 but small are spirals ap-

proaching a stable focal point; this remains true as b approaches zero. For

b = 0, the origin is a vortex point and the trajectories are closed. It is

thus seen that there is a definite difference between the qualitative aspect

of trajectories when b is very small and that when b is equal to zero. From

a practical standpoint, however, there is hardly any difference between the

two cases; no discontinuities of any kind exist in the solutions.

Of greater practical interest are the cases when either a - 0 or

k +-0. We shall examine first the case when a * 0. It is apparent that when

a = 0 Equation [128.1] becomes an equation of the first order and its solution

is given in terms of one constant of integration, namely,

k

x = x0 e bt [128.2]

where zo is that constant. By differentiating [128.2] we obtain

k - t k
x= oe [128.3]

It is seen that the coordinate z and the velocity i are not independent but

are related by Equation [128.3]. In other words, in the phase plane the

trajectories of Equation [128.2] are reduced to a single line y = - z, and

the rest of the plane is not involved. This fact can be expressed by stating

that the phase space of a differential equation of the first order is uni-

dimensional, that is, it is a phase line instead of a phase plane.

The limit case, a = 0, never actually occurs in practice since in

any electrical system containing resistance and capacity there is always a

small residual or "parasitic" inductance. Likewise, mechanical systems with-

out inertia are only idealizations. For these reasons it is preferable to

investigate the effect of a small coefficient a in the solution of Equation



[128.1] rather than to drop this coefficient in the differential equation

itself.

The solution of [128.1] is

x = C1
e rlt + C2 er2 [128.4]

where C1 and C2 are the constants of integration and r1 and r2 are the roots

of the characteristic equation

ar2 + br + k = 0

If the initial conditions t = 0, x = zo, and i = io are given, one obtains

xo = C1 + C2; o = C, r + C2 r2  [128.51

from which one obtains the values of C, and C2:

C, Z X0 r2 - X and C2 X 1 orl- [128.6]
2  r1  1  2

where

b b2 k b b 1 2ak [128.7r = + -- +4( - ) [128.7]1,2  2a - 4a2 a 2a - 2a 2

In this expression only one term is retained in the expansion of the square

root, since a is small. This gives

k b k b
r and r +-- - [128.8]1 b 2 a b a[128.8

If the values [128.6] of the constants and [128.8] of the approxi-

mate expressions for the roots r1 and r2 are substituted in Equation [128.4],

the approximate solution xl(t) of [128.1] is in the form

Atk ak -A a kt b

x(t) = xo e b t a- + b io e - e a [128.9]

It is to be noted that the solution x1(t) is an approximate one

because the expansion of the square root has been limited to the first two

terms; this is justified by the assumed smallness of a.

On the other hand, for a = 0 the solution of Equation [128.1] of

the second order becomes the same as that of the equation of the first order

given by [128.2]. To emphasize the fact that the solution [128.2] is the same

as that of Equation [128.1] when complete degeneration occurs, that is, when

a = 0, we will write it as

k

x(t) = xoe b [128.2]

Consider now the function

ak -At a e [128.10]
O(a,t) = zxl(a,t) - x(a,t) = - oe + xo e- - e t 128.10

111 III,



This function represents the difference between the approximate solution zx(t)

of [128.1] in the neighborhood of the point of degeneration, where a is very

small, and the solution T(t) of a completely degenerated equation [128.1] of

the first order: The function 0(t) approaches zero uniformly in the interval

0 < t < o when a -,0.

The expression for the derivative of this function is

k bL t ak k
(a,t) = i 1(a,t) - ((a,t)= zo- + )e a - b2 oe b [128.11

For very small values of t the function = zA + jo, and it is im-

possible to reduce it by reducing the coefficient a. However, for a suffi-

ciently large t, which is supposed to be fixed, one can always find a value

of a small enough so that the value of ¢(t) is smaller than a given positive

number e.

We can express this by saying that whereas the function 0(a,t), con-

sidered as a function of a, approaches zero uniformly in the interval 0 < t <

when a - 0, the function ¢(a,t) behaves in a like manner only when the values

of t are sufficiently large. For t = 0 the convergence of the function i1(t)

to the function :(t) when a - 0 is not uniform. In other words, to a given a,

however small, one can always assign a value of t = tI such that = Xok + 0.

Only in a very special case, when Xo- + o = 0, does thi's non-uniformity of

convergence disappear, but this case is of no practical interest.

One can also state that the difference between the approximate solu-

tion xl(t) of a quasi-degenerate system when a is very small and the corre-

sponding solution z(t) of a completely degenerate system when a = 0 approaches

zero in the whole interval 0 < t < o when a - 0 except in a very small neigh-

borhood around the point t = 0; this neighborhood is smaller as a is smaller

and in it the difference i1(t) - F(t) of the slopes of the two curves xl(t)

and X(t) cannot be reduced. This means that the function xl(t) undergoes a

quasi-discontinuous jump in this neighborhood.

When the parameter k - 0, the problem is treated in a similar man-

ner. First, for a completely degenerate equation with k = 0, Equation [128.1]

becomes

ax + bi = 0 [128.12]

Integrating it, one obtains

ai + bx = M [128.13]

,where M is the constant of integration. The value of M is determined by the

initial conditions, namely,

aio + bx o = M [128.14]



The solution of Equation [128.13] is

M b
x - + Ce a [128.151

where C is a constant of integration. One obtains finally

_(t) = Xo + o 0 - 1 - ea [128.16]

If, however, one proceeds with the solution of Equation [128.1] in

the neighborhood of its degeneration, where k is very small, the approximate

solution is

At a b

x 1(t) = x0oe + b-o 1 - ea [128.17]

By forming the functions

S(k,t) = xl(k,t) - x(k,t) and b(k,t) = xl(k,t) - -(k,t) [128.18]

one ascertains by an argument similar to that given in connection with the

functions 0(a,t) and (a,t) that for a sufficiently small k the function

(k,t) approaches zero when k - 0 uniformly in the interval 0 < t < c, whereas

0(k,t) approaches zero when k - 0 for all values of t except when t ) cc, for

which value 0(k,t) approaches the value x0.

129. IDEALIZATIONS IN PHYSICAL PROBLEMS

In applications, idealizations of quasi-degenerate systems as abso-

lutely degenerate systems are frequently made, as was mentioned in Section

127. Thus, for example, the differential equation of the so-called (R,C)-

circuit is usually written in the form

Rdi + 1i = 0 [129.1]
dt C

where i is the current in the idealized circuit (L = 0). The corresponding

quasi-degenerate equation, with L very small, is

d'i di 1
Ld + R_ + -i = 0 [129.2]
Sdt2 dt C

With the solution of the absolutely degenerate equation [129.1] designated by

i(t) and that of the quasi-degenerate equation [129.2] designated by ij(t),

the functions i(t) and il(t) have the appearance shown in Figure 129.1. For

Equation [129.1], with L = 0, the current starts from the point A and decays

exponentially thereafter. For the quasi-degenerate equation [129.2], with L

very small, the current starts from zero, increases very rapidly, and follows

the curve i,(t) which becomes practically identical with the curve i(t) after

a very short time; this time is shorter as L is smaller. According to the
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absolutely degenerate equation [129.1], with L = 0, the current i(t) undergoes

a true mathematical discontinuity OA at t = 0, whereas the current il(t) of

the quasi-degenerate equation [129.2], with L 0, has a quasi-discontinuity

OA' which approaches OA when L approaches zero.

Although these facts are well known if considered independently of

the previous history of the system, as in the above discussion, they appear

in a somewhat different form in a quasi-

i q discontinuous stationary relaxation oscil-

lation. Thus, for example, the oscillation

A depicted in Figure 127.4 is governed by the

full differential equation of the second

order on the analytic branches AB, A'B', ...

of the trajectories; these branches are de-

(t) termined in terms of the two constants of

integration corresponding to the initial

S conditions represented by the points A and
St A' of the phase plane. During the jumps BA',

Figure 129.1 B'A", ... the transition is governed by

two differential equations of the first order. Since the solutions of each of

these equations are determined by one constant of integration, there appears

a relation between the variables and ic of the phase plane which does not
dt

exist on the analytic branches AB, A'B', ... . As a result of this, the jumps

must occur along a certain direction in the phase plane.

Thus the assumption of certain idealizations specified in connection

with Figure 127.3 not only permits a discontinuous treatment of the problem

but also indicates the direction of the jumps in the phase plane.

It is impossible, however, to proceed beyond this point if one at-

tempts to apply these idealizations to the problem of discontinuous stationary

relaxation oscillations. What is lacking in the system of Figure 127.4 is the

mechanism by which the phenomenon of "closing" or "opening" the switch is pro-

duced spontaneously by the internal reactions of the circuit itself.

In order to be able to formulate this condition and thus to complete

the discontinuous theory it will be necessary to introduce an a priori propo-

sition whose validity is justified only by its agreement with the observed

facts. This emphasizes once more the physical nature of this theory as dis-

tinguished from the contents of Parts I and II in which the argument was pure-

ly analytical.

130. CRITICAL POINTS OF DIFFERENTIAL EQUATIONS; BASIC ASSUMPTION

It was shown that, as a result of certain idealizations, discontinu-

ities appear in the mathematical treatment of physical phenomena which exhibit
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rapid changes at certain points of their cycles. The use of discontinuities is

convenient in some respects but inevitably introduces certain complications.

These facts are too well known from the theory of mechanical impacts to need

any emphasis here.

It is obvious that similar difficulties are to be expected if a dis-

continuous treatment of relaxation oscillations is adopted. For example, in an

electronic "sweep circuit" some variables change so rapidly at certain points

in the cycle that it is natural to attempt to idealize these changes by mathe-

matical discontinuities. Obviously, any attempt to explain these changes on

the basis of some kind of impact is difficult because the energy delivered by

the external source, a battery, remains constant, and one cannot very well

correlate the apparent continuity of the energy input into the system with the

quasi-discontinuous changes of some of its variables. Very frequently a slight

change of a parameter causes a disappearance of the phenomenon,and vice versa.

In some particularly simple circuits in which the effect is known to exist,

one succeeds in "explaining" it by a more or less elementary physical argu-

ment. In more complicated circuits it is impossible to give an account of

what actually happens and, still less, to predict theoretically the existence,

or non-existence, of such effects. There exists no analytical theory of these

oscillations which would permit a treatment of these phenomena on a uniform

basis as was possible for the quasi-linear oscillations with which we were

concerned in Parts I, II, and III.

In order to be able to find a solution and to correlate the numerous

experimental phenomena on a common basis, it becomes necessary to define terms

and to introduce some kind of basic assumption, the value of which is to be

justified by its agreement with the observed facts.

Definition: Critical points are the points at which the differential equation describing

a phenomenon in a certain domain ceases to describe it.

Basic Assumption: Whenever the representative point following a trajectory of the

differential equations describing a phenomenon reaches a critical point, a discontinuity

occurs in some variable of the system.

Since, by virtue of the basic assumption, the occurrence of discon-

tinuities depends on the existence of citical points, it is necessary to

specify certain criteria by which their existence can be ascertained. In what

follows we will encounter two principal criteria.

1. Let us consider a system of differential equations of the form

dx P(x,y) dy Q(x,y)
dt = R(x,y) ; dt R(x,y)

Obviously these differential equations become meaningless and, hence, cease to
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describe a physical phenomenon for the points (xi,y i) for which R(xi,yi) = 0.

This equation represents a certain locus of critical points, and by virtue of

the basic assumption a discontinuity occurs each time the representative point

reaches the curve R(xi,y i) = 0. It is important to note that, as far as the

trajectory is concerned, the passage through a critical point does not in any

way affect its determinateness since R cancels out in the expression dydx - P
It is impossible, however, to determine the motion on the trajectory in the

neighborhood of a critical point. In this respect the local properties of a

critical point are opposite to those of a singular point where the trajectory

is indeterminate but the motion is determinate.

2. The existence of critical points or of a locus of such points can

sometimes be revealed from the study of trajectories in a certain domain of

the phase plane. A typical example in which this can be done is shown in Fig-

ure 130.1. The trajectories arrive at, or

Ldepart from, a certain threshold L from both

M T' sides, as shown. If no singular points, that

I \is, postions of equilibrium, exist in a nar-

row domain surrounding L, one can assert that

the line L is a locus of critical points.

/R It is apparent that the trajectories

situated in the regions M and N belong to two

N different differential equations. Let us as-

sume that the phenomenon is represented by the

Figure 130.1 motion of the representative point R on a tra-

jectory T of the region N. Since the singular
points are absent by our assumption, R will reach a point P on L in a finite

time. Having reached this point, the representative point finds itself in a

kind of analytical impasse from which there is no normal issue, that is, along

the integral curves. In fact R cannot pass onto the trajectory T' passing

through P nor can it turn back on T since, in both cases, this would be incon-

sistent with the differential equations prescribing a definite direction on

the trajectories of the two regions M and N. Nor can the representative point

remain at the point P which is not a pqsition of equilibrium. The differential

equations cease to have any meaning at the point P and therefore cease to rep-

resent the physical phenomenon. Hence the point P is a critical point, and the

line L is a locus of such points. By our basic assumption the discontinuities

necessarily occur once the representative point has reached some point on L.

We are going to use the basic assumption extensively in the inves-

tigation of relaxation oscillations in relatively complicated circuits in

which it is impossible to predict the nature of the phenomenon on a basis of
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elementary intuitive reasoning. It is useful to illustrate the application

of the basic assumption to the simple example given previously, Figures 127.3

and 127.4. It is apparent that at the instant when the switch is closed, or

opened, the differential equation of the second order ceases to describe the

phenomenon since the right and the left portions of the circuit, instead of

being in series, become in parallel. Hence this instant corresponds to a

critical point, and a discontinuity is to be expected as we have ascertained

by the elementary argument. The same argument applies to the ball striking

the walls. In these two examples the oscillations are of the impulse-excited

type, and the application of the basic assumption does not yield anything of

interest.

We shall see that in connection with relaxation oscillations proper

the basic assumption will be a useful tool by which the possibility of relaxa-

tion oscillations can be ascertained.

131. CONDITIONS OF MANDELSTAM

At the end of Section 127 certain idealizations and a choice of var-

iables were specified so as to be able to introduce a discontinuous treatment

of certain problems. It was shown that the necessary condition for such a

treatment is the degeneracy of differential equations from the second to the

first order if the variables L and Vare selected. In the preceding section
dt dt

we have formulated a sufficient condition for the occurrence of a discontinu-

ity on the basis of a certain basic assumption.

There still remains one question to be settled, namely, the deter-

mination of the discontinuities once we have ascertained by the assumption

that the discontinuity has to occur. Using the terminology of the phase plane,

we can specify this last part of the problem as follows. Let us assume that

the representative point R has reached a critical point A(xz,y,). We may

question into which other point B(x2,y 2) the representative point will jump

from the point A. In discussing the solutions [127.3] of Equations [127.2]

we have already touched this subject and found that in the very special case

considered there the jump is from A(0,0) to B( E ).

L. Mandelstam formulated the conditions of a jump on the basis of

certain plausible assumptions regarding the continuity of energy during the

infinitely short time interval of the discontinuity. It is to be noted that

these conditions of Mandelstam are useful for relaxation oscillations and not

for impulse-excited oscillations for reasons which will appear later. The

argument of Mandelstam is based on the continuity of the functions i(t), the

current through an inductance L, and V(t), the voltage across the capacitor,

as was previously mentioned in connection with the expressions [127.3] rep-

resenting solutions of the degenerate equations of the first order. Since

li IlM il



i(t) and V(t) are continuous, clearly the electromagnetic energy 2 stored in

an inductance and the electrostatic energy stored in a capacitor are also con-

tinuous functions of time. One obtains the conditions of Mandelstam by writing

to+0 to+0

Ai t = 0; AV = 0 [131.1]
to -0 to -0

where (to - 0, to + 0) is the infinitely small time interval during which the

discontinuity occurs. The important point to be noted in connection with these

conditions is that they are applicable to an infinitely small time interval

and to circuits with finite dissipative parameters. The first restriction is

trivial and is nothing but the expression of a continuity of functions i(t)

and V(t). As to the second, it requires an additional remark. One could formu-

late the following case in which the conditions of Mandelstam apparently do

not hold. Let us assume that a charged capacitor is suddenly short-circuited

so that its energy C disappears instantly; this seems to contradict the

second condition [131.1] of Mandelstam. The fallacy of this reasoning lies in

the fact that the only way in which the energy can disappear suddenly is to be

totally converted into heat. But in order that this may occur, a finite dissi-

pative parameter must be present. If, however, such a dissipative parameter

exists in the circuit, there exists also a finite time constant so that the

disappearance of the charge, and, hence, of the energy, cannot be instantane-

ous, and it is sufficient to define a small time interval consistent with the

time constant of the circuit to ensure the validity of the conditions of

-Mandelstam.

The usefulness of the conditions of Mandelstam is limited only to

relaxation oscillations proper. In fact, in impulse-excited oscillations the

idealization employed is of an entirely different kind, and it is assumed that

the energy exchanges between the system and an external source occur instan-

taneously. Summing up the result of this and of the preceding sections, it

can be stated that the basic assumption and the conditions of Mandelstam are

useful in studies of relaxation oscillations but are unnecessary for impulse-

excited oscillations.

132. REMARKS CONCERNING SYSTEMS OF DEGENERATE DIFFERENTIAL EQUATIONS

In Section 3 it was mentioned that a differential equation of the

second order can always be represented by a system of two differential equa-

tions of the first order if a new variable y = d- is introduced. Likewise, a
th dt

differential equation of the n order can be reduced to a system of n differ-

ential equations of the first order by introducing the variables = Yl,
dy 

dt

dt 2
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With degenerate differential equations the situation is somewhat

different. Thus a completely degenerate equation of the second order is, in

fact, a differential equation of the first order. As a result of this, the

phase space, instead of being two-dimensional, that is, a phase plane, becomes

uni-dimensional, that is, a phase line. Moreover, instead of analytic trajec-

tories, piecewise analytic trajectories become possible.

A system of two differential equations of the second order can gen-

erally be reduced to a system of four differential equations of the first

order, which means a system of the fourth order. If, however, each of the

original differential equations of the second order degenerates into one equa-

tion of the first order, the system of the fourth order reduces to one equa-

tion of the second order, and its solutions can be represented by trajectories

in a phase plane. This resultant equation of the second order, however, rep-

resents the result of degeneration of the system of the fourth order. We can

express this by saying that we have a doubly degenerate system. Since each of

the two differential equations of the first order admits discontinuous solu-

tions, the doubly degenerate system of the second order will also possess cer-

tain discontinuous stretches in its phase plane so that its trajectories, in

general, will be composed of certain analytic arcs joined by these stretches.

Under certain conditions a doubly degenerate system of the second order may

degenerate into a single differential equation of the first order; we can call

such a case a triply degenerate system. We shall encounter one such system in

what follows. In a triply degenerate system one differential equation of the

first order represents the result of the degeneration of the system of the

fourth order.

Although the use of degenerate equations extends the application of

topological methods to a series of important practical cases which could not

otherwise be represented in a phase plane, it should be noted that piecewise

analytic trajectories of this kind "closed" by discontinuous stretches do not

exhibit the features common to the regular analytic trajectories studied in

Part I. We shall encounter, for example, systems in which no singularities

exist inside such "closed" trajectories; in some other systems such trajecto-

ries include singularities alternating in the course of time between a focal,

or nodal, point and a saddle point. Moreover, certain difficulties arise in

the formulation of conditions for stability of such degenerate systems, as

will be specified in Chapter XXV. These peculiarities are, of course, to be

expected. They reflect to some extent the fact that the discontinuous theory

of relaxation oscillations is based on certain idealizations; this fact makes

it difficult to compare it directly with classical methods making use of ana-

lytic functions. The principal usefulness of this theory at present is that
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it permits obtaining satisfactory qualitative information in a great majority

of important practical problems whose solutions are beyond the reach of exist-

ing analytical methods.



CHAPTER XXI

DEGENERATE SYSTEMS WITH ONE DEGREE OF FREEDOM

133. PERIODIC SOLUTIONS OF DEGENERATE SYSTEMS OF THE FIRST ORDER

A differential equation of the first order

dx
dt = f(x) [133.1]dt

obviously does not possess continuous analytic periodic solutions. Moreover,

one can assert that if the function f(x) is single-valued, no continuous, al-

though not necessarily analytic, periodic solutions are possible. In fact,

in order that some sort of periodicity may exist, it is necessary that the

system traverse the same line x = x, with two oppositely directed velocities;

this, however, is impossible if f(x) is single-valued. In the example illus-

trated by Figure 127.2b, we saw that the "closed" periodic trajectory ABCDA

is characterized by the fact that the function f(x) = tvo is actually double-

valued. It so happens that, in the example referred to, the function f(x) is

a constant. It is easy, however, to waive this restriction by assuming that

the plane on which the ball rolls, instead of being horizontal, rises toward

the right wall. Then the trajectory will be a trapezoid ABCDA, as shown in

Figure 133.1. One could imagine

still other cases by assuming that,

instead of rolling on a plane, the

ball rolls on some kind of cylindri-

cal surface whose generating lines

are parallel to the i-axis. In this w f
case the trajectory would be formed

by stretches AB and CD of analytic

arcs "closed" by the discontinuous

stretches BC and DA.

The change from one branch

of the function f(x) to the other one

generally occurs at critical points Figure 133.1

and is discontinuous. Very frequently

this is equivalent to saying that the phenomenon is governed by two distinct

differential equations during its cycle. During one fraction of the .cycle

the phenomenon is described by one differential equation and during the other

fraction by the other equation. The change from one differential equation to

the other occurs at the critical points. In the example illustrated by Figure

133.1 the function f(x) happens to have branches which are symmetrical with

respect to the x-axis. This is not always so, as will be shown later. We will

now illustrate this matter by the following two well-known examples.
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134. RELAXATION OSCILLATIONS IN A CIRCUIT CONTAINING A GASEOUS CONDUCTOR

In view of the fact that this subject has been explored, we shall

omit the familiar details and will endeavor primarily to show the application

of the discontinuous theory in order to prepare the groundwork for more com-

plicated cases beyond the reach of elementary theory.

F T i_ i,R I

- E C V-- BL
N E-V

0 C D V

Figure 134.1 Figure 134.2

Figure 134.1 shows a circuit with the usual notations and with the

positive directions as indicated; N is a gaseous conductor, such as a neon

tube.

Figure 134.2 represents the characteristic* ABD of the gaseous con-

ductor N, which can be represented by a non-linear empirical relation il =

0(V).
The differential equations of the circuit obviously are

dV
R(i + i ) + V = E; i = C dt [134.1]

These equations reduce to the following differential equation of the first

order

dV 1 [E - V- Re(V)] [134.2]
dt RC

This equation is valid only when the discharge exists; during its extinction

il = q(V) = 0, and we have
dV 1
dV - (E - V) [134.3]
dt RC

Since we know that the phenomenon is characterized by alternate

striking and extinction of the discharge,it is apparent that it is represented

* In order to avoid any misunderstanding, we shall use the term characteristic in the engineering sense,
that is, to designate a certain experimental curve connecting the values of certain physical quantities,
such as current iI through the non-linear conductor N and voltage V across it. We will reserve the term
trajectory to mean an integral curve of a differential equation, as we have done previously.
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alternately by two distinct differential equations, [134.2] and [134.3].

Since these differential equations are of the first order, only one constant

of integration is involved in their solutions. But as there are two dynamic

variables iI = O(V) and V, it is apparent that there must exist a definite

relation between- these variables, as has been mentioned in connection with

Equation [128.3]. During the time intervals when the discharge exists, this

relation is obviously the characteristic ABD.

Since the phase space is uni-dimensional for this system, it is ap-

parent that during the intervals when the discharge exists the characteristic

appears as the phase line and during the intervals of extinction the phase

line is the V-axis. Aside from these phase lines, the plane is not involved.

As is well known from elementary theory, the points of equilibrium

are given by the points of intersection of the characteristic and the straight
E -Vline i = R On the upper branch AB of the characteristic the equilibrium

is stable; on the lower branch BD it is unstable, as is easy to ascertain by

an elementary procedure. The case when the straight line i = E - V cuts the
R

upper branch of the characteristic is obviously of no interest from the stand-

point of oscillations. We shall confine our attention, therefore, to the case

when the resistance R has been adjusted to a value at which the straight line

and the characteristic intersect at some point S situated on the lower un-

stable branch BD.

Assume that we start the investigation of the phenomenon at the in-

stant when the discharge has just appeared; this instant is represented by the

point A in Figure 134.2. Since < 0 on the upper branch in this case, thedt
representative point will move from A to B on the upper branch. The arrows on

the characteristic, which, as was just explained, is also the phase line, in-

dicate the positive directions consistent with the differential equation. It

follows, therefore, that having reached the point B, the representative point

finds itself in a situation which was specified in connection with Figure

130.1, so that the point B is a critical point of the differential equation

[134.2], and by our basic assumption we can assert that a jump must occur at
this point. In order to determine the character of the jump we have to apply

the condition of Mandelstam. The only form of stored energy is the electro-
CV2

static energy 2 stored in the capacitor. Thus the condition of the jump is

to +0

AV = 0
to - 0

which means that "during" the jump the voltage V across the capacitor remains

constant, that is, the jump occurs parallel to the il-axis along the stretch

BC. The process of extinction is thus "explained" on the basis of the discon-

tinuous theory.
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Beginning with the point C, Equation [134.3] describes the process

of charging the capacitor with no discharge. During that time interval the

representative point moves along the V-axis with a finite velocity until the

point D is reached. Here the discharge strikes again, and the representative

point is transferred discontinuously to the point A, after which the cycle is

repeated. Since at the point D Equation [134.3] ceases to represent the phe-

nomenon, we conclude that D is also a critical point.

It is thus seen that the familiar phenomenon of relaxation oscilla-

tions of a circuit containing a gaseous conductor can be treated consistently

on the basis of the discontinuous theory and can be represented by a piecewise

analytic cycle ABCDA formed by two analytic branches AB and CD "closed" by the

discontinuous stretches BC and DA. We note also certain differences between

the discontinuous oscillations just studied and the continuous oscillations

treated by the classical theory in Part I. The closed trajectory ABCDAis

not of a limit-cycle type in that the phenomenon jumps, so to say, directly

into its cycle without a gradual asymptotic spiraling around it. This cycle

resembles in all respects a similar cycle shown in Figures 127.2b and 133.1

describing the idealized behavior of a ball undergoing reflections from con-

straining walls.

So far, study of such oscillations does not reveal anything new, and

the main purpose of this discussion is to illustrate the application of the

discontinuous theory of relaxation oscillations to a familiar phenomenon gen-

erally treated by elementary methods. As we proceed further, the usefulness

of this theory will become more manifest. In the example treated in the fol-

lowing section, for instance, it would be relatively difficult to apply the

semi-intuitive physical argument. In still further examples it would be

altogether impossible.

135. RC-MULTIVIBRATOR

As a second example of a system which can be described by one dif-

ferential equation of the first order, we shall investigate the so-called RC-

multivibrator circuit shown in Figure 135.1. The electron tube V 2 is a non-*

linear conductor characterized by the equation Ia = q(e). The tube V, appears

here merely as a linear amplifier amplifying the potential difference ri, the

feed-back voltage, between the points B and D and applying-the amplified volt-

age eg = kri to the grid of V2,, k being the amplification factor of V,. The

circuit is idealized in the customary manner, that is, the effects of the par-

asitic inductance, the grid current, and the anode reaction are neglected.

The differential equations of the circuit with the positive direc-

tions shown are

II
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Figure 135.1

(R + r)i + V = Rq(kri); i = Cdt [135.1]

These equations reduce to the equation

krR0'(kri) - (R + r) - -i [135.2]

The critical point i = il is given by the equation

f(i) = [krRO'(kri) - (R + r)] = 0 [135.31

where 0'(krij) designates the slope of the characteristic at the point i = ij.
One can also apply the argument given in connection with Figure 130.1. For
this purpose the graphical procedure shown in Figures 135.2a and b will be
useful. Figure 135.2a shows the characteristic Ia = l(kri) of V2 multiplied
by a constant factor R. The tube V2 is supposed to be biased at a point 0 in
the middle of the rectilinear part of its characteristic. From the usual form
of the characteristic q(kri) it is apparent that its slope d = 0' is maximumdi
when i = 0 and approaches zero monotonically as jil - oo. Let 0'(0) = S and
assume that RS > R + r, without which, obviously, no self-excitation is pos-
sible. The curve V(i) represents the function RO(kri) - (R + r)i. The curve
shown in Figure 135.2b is the slope curve of the function R(kri) multiplied
by a constant factor kr and referred to the axis M'N'. It is apparent that
if this curve is referred to the MN-axis parallel to M'N' and at a distance
(R + r) from the origin 0, the ordinates f(i) of this curve represent the
left-hand term of the expression [135.3]. Hence, the points P and Q are crit-
ical points, and by transferring these points on the diagram of Figure 135.2a
one obtains the critical points B and D situated on the V(i)-curve and sym-
metrical with respect to the origin under the assumed idealization of the
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v characteristic. It is apparent

R (kri) also that the inner interval

(-il < i < +il) is unstable since

f(i) > 0 in that interval. On the

(R +r)i contrary, the outer interval

c (i > +i; i < -i) is stable since

f(i) < 0 in that interval, as is

Si i  seen at once from Equation [135.2].

The positive directions on the

iA phase line, the V(i) curve, are

shown in Figure 135.2a. The argu-

ment specified in Section 130 is

therefore applicable. Thus, for

example, when the representative

S() point has reached the point B on

the stretch AB, it has to jump dis-

R I continuously, and the second condi-

tion of Mandelstam specifies that

the jump must occur parallel to the

i-axis, since in such a case the
f I

-, i energy stored in the capacitor doesM N
not change during the jump. The

R+r discontinuous stretch BC so tra-

M' I I N' versed ends at the point C. Here

(b) the phenomenon is again governed by

the differential equation, and the
Figure 135.2 analytic stretch CD is traversed

with a finite velocity. At the

point D another jump occurs along the stretch DA, so that a closed piecewise

analytic cycle ABCDAresults. The phenomenon therefore follows a pattern sub-

stantially the same as that which has previously been investigated in connec-

tion with the ball striking the walls and also with the neon-tube oscillator.

The difference between the neon-tube circuit and the multivibrator circuit is

that for the former the phenomenon is described alternately by two separate

differential equations [134.2] and [134.3], whereas for the latter the phenom-

enon is governed by only one differential equation [135.2]. Because of the

symmetry of the curve V(i) and that of the critical points, however, the

closed cycle is obtained with the origin as the center of symmetry.
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136. SYSTEM WITH ONE DEGREE OF FREEDOM DESCRIBABLE BY
TWO DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

The systems with one degree of freedom so far considered could be

expressed by one differential equation of the first order. Chaikin and

Lochakow (14) have investigated an interesting case when a dynamical system

with one degree of freedom is describable by two differential equations of

the second order possessing critical points. We shall outline briefly the

principal features of the relaxation oscillations appearing in this case.

The fact that the system of differential equations is now of the

second order will account for the representation of the phenomenon in the

phase plane instead of its uni-dimensional representation by a phase line, as

in previous cases. It will be shown that the discontinuous theory permits

establishing the principal features of the phenomenon, although a direct in-

tuitive argument, such as is applicable in the simple systems of Sections 133,

134, and 135, is insufficient here.

The circuit investigated by Chaikin and Lochakow is shown in Figure

136.1. It is observed that the only difference between this circuit and that

shown in Figure 135.1 is that here the inductance L replaces the resistance R

of the circuit of Figure 135.1. It will be shown now that the behavior of

this circuit exhibits features entirely different from those of the circuit

of Figure 135.1.

Using the previous notations, we obtain, by Kirchhoff's laws,

dl .= [16.1I.= (kri) = I + i; L--t - ri - dt = [136.1]

A

e gV I vl L-C

Figure 136.1
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dl
Introducing the variables x = kri and y = - and differentiating these equa-

tions, one gets
dx y dy x 1 y [136.2]
dt = (x)' dt krLC kL (x)

where

O(x) = '(x) [136.3]kr

The phase trajectories are given by the equation

dy x(x) + 1 [136.4]
dx krLCy kL

The point x = y = 0 is clearly a singular point. It is apparent from the form

of the characteristic of electron tubes that the function O(x) decreases mon-

otonically from a positive value 0(0) = S - to a negative value d(x) = -k

when Jzi + o. Hence there exist two roots x = _xl , for which both and dt

become infinite. According to our definition, these roots z = +x are the

critical points of the system [136.2]. In the phase plane the values x = _xl
determine two critical thresholds; that is, they are loci of the critical

points of this system. It is to be noted that at these thresholds the tangent

to the phase trajectories

(d 1 [136.5
d/= +x kL

is determinate. It is impossible, however, to determine the motion of the

representative point since the differential equations become meaningless at

these points.
In order to show that these thresholds x = ±x1 separate the regions

df the phase plane in which the topological structure of trajectories is radi-

cally different, we shall simplify the

x)/ problem slightly without, however, in-

troducing any qualitative changes. Fig-

ure 136.2 represents the characteristic
I Yo of the electron tube V2 shown in Figure

AX I 136.1. We shall exclude the critical

-_ I I thresholds z = +zx by drawing parallels

I x, x to the y-axis on both sides of each

threshold so as to obtain narrow strips

I I of width Az. The function i(z) will
then be S(x) - > 0 and -L in the

kr kr
inner and outer intervals, respectively.

This will cause no qualitative changes

Figure 136.2 but will change slightly the form of the

iiiYI f l___
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trajectories in the neighborhood of j

the strips; see Section 9, Part I.

Since the equations then become lin-

ear, the standard procedure, see

Section 18, Part I, shows that the

origin O appears as a saddle point

for the trajectories of the inner

interval (-x i < x < +zx) and as

either a focal point (if r < 2 I) or

a nodal point (if r > 2#) in the

outer interval (x < -x, ; x > +x).

We shall assume the existence of a

focal point in the outer interval

since this is commonly encountered

in applications.

The picture of trajecto-

ries in this case is shown in Figure

136.3. A continuum of hyperbolic

trajectories corresponding to the

saddle point fills the inner inter-

val, and a continuum of spirals corresponding to the focal point appears in

the outer interval. By an elementary discussion of the sign of in Equation

[136.4] for different quadrants of both intervals, it can be ascertained that

the positive directions on the trajectories are oriented as shown by the ar-

rows. It is apparent that these thresholds x = ±xl are loci of critical

points, and discontinuities occur whenever the representative point following

a trajectory reaches one of the lines x = ±x,. Since the differential equa-

tions become meaningless at the critical points, the determination of discon-

tinuities is made by the conditions [131.1] of Mandelstam, which, in this

case, are

to+0 to+0 to+0 1 to +0
AI = ydt = 0; AV - xdt = 0 [136.6]

to - 0 to - 0 to'- O krC to - O

Applying these conditions to Equations [136.1], one obtains

(X )  1  X2  X - X2 [136.7]
kr = (z 2) - kr' yl 2- kL

where x2 and y2 are the coordinates of the representative point immediately

after the discontinuity. Since the function O(x) is an empirical curve, it is

preferable to plot first the function 0(x) = q(x) - - as was done in Figure

135.2a. One obtains for 0(x) a curve similar to the curve V(i) of Figure
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Cd 135.2a. By expressing the condi-
dt T

tion 0(x1 ) = 8(x2), one can find
SX2 if X is given. We omit this

Sgraphical construction and merely

mention that for characteristics

of electron tubes commonly encoun-

tered the jump occurs from +zx to
-x2 -XI x_ x x 2 (with z,21 > Ix11) and from

-z to +x,. When z2 is known, the

second equation [136.7] permits

SD\ determining y2 for given x1 and y,.

The representation of

c / such a quasi-discontinuous oscil-

lation in the phase plane of the

variables (z,y) is shown in Figure

136.4. It is noted that the jump
Figure 136.4 from (x,,y,) to (X2,y2) is the

same for all trajectories. Assume

that the representative point, following a trajectory T of the outer interval,

has reached a critical point A of coordinates (zx,y1 ). The second equation

[136.7] then permits determining the "direction" of the jump AB in the phase

plane. At the point B another spiral trajectory begins which encounters at C

another critical point resulting in the jump CD, and so on. It can be shown,

although we omit the proof, that after one turn of the radius vector the

piecewise analytic spiral ABCDE will approach the origin, which means that the

point E is below the point A if the latter is sufficiently distant from the

origin O. If, however, one applies the same reasoning to a point A' near the

x-axis on the critical line x = +xz, one finds, on the contrary, that E' is

above A'. Thus the large spirals shrink and the small ones grow with each

turn of the radius vector. Hence there exists one and only one piecewise ana-

lytic spiral for which the points A and E coincide so that the trajectory be-

comes closed. Such a closed trajectory may be termed a piecewise analytic

limit cycle, and it is stable. One notes the difference between such a tra-

jectory and the piecewise analytic cycles described in Sections 133, 134, and

135, which are not of' the limit-cycle type. The difference is due to the fact

that the present phenomenon is expressible by two differential equations of

the first order and is represented in the phase plane, whereas in the sections

mentioned above it was determined by one differential equation of the first

order and was represented by phase lines without involving any other points

of the phase plane.
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Another remarkable feature of

this analysis is that the unstable hyper- E

bolic trajectories of the inner interval B

do not appear at all in this representation

because that interval is traversed discon-

tinuously. Experiments made by Chaikin and

Lochakow corroborate these theoretical con-

clusions. In their experiments a cathode-

ray oscillograph was adapted to record the

phase trajectories of the system, as was

explained in connection with Figure 24.7, D

Part I. The record has the appearance shown C

in Figure 136.5. There are two spiral arcs Figure 136.5
BC and DE corresponding to a relatively slow

motion of the electronic beam on the analytic trajectories of the outer inter-

val. The quasi-discontinuous jumps EB and CD remain unrecorded because of the

much higher speed of the beam in the region of the inner interval. It seems

logical to assume that when the phenomenon starts from rest, one hyperbolic

trajectory of the inner interval is actually traversed, but once the first

critical point has been reached, the phenomenon begins to "skip" the inner in-

terval and continues to do so thereafter.

Once the essential features of this phenomenon have been ascertained

by this method, it is easy to give a corresponding physical interpretation.

The fact that the jumps occur obliquely in the phase plane of the variables

(x,y) means that at these instants the voltage L dl across the inductance and
the current dt

the current i = in the capacitor undergo quasi-discontinuities, although

the current I through the inductance and the voltage V across the capacitor

remain continuous. In other words, the functions 1(t) and V(t) are continuous

but are not analytic at the jumps in the sense that they have discontinuous-

first derivatives. This is in agreement with the elementary theory of an im-

pulsive excitation of the idealized (L,R)- and (R,C)-circuits. It is apparent,

however, that mere knowledge of these well-known facts would be entirely in-

sufficient for the purpose of establishing a qualitative picture of a compli-

cated phenomenon of this nature if no general method, such as that offered by

the discontinuous theory, were available.
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CHAPTER XXII

MULTIPLY DEGENERATE SYSTEMS

137. MULTIVIBRATOR OF ABRAHAM-BLOCH*

As an example of a system with two degrees of freedom describable

by two differential equations of the first order we shall investigate the be-

havior of the circuit shown in Figure 137.1. Neglecting the effect of grid

current and anode reaction and using the notations and positive directions

shown, we obtain the following equations:

S= Ial + il 12 = 2 2

RI 1 + i- idt + ri1 = E; RI 2 + -' i2 dt + ri = E [137.1]

la, = q(eg1) = (ri2) 1a2 = 1(eg2) = k(ri1)

where I' = O(e ) is the non-linear characteristic of the electron tubes V1 and

V 2 . Differentiating the second group of equations [137.1] and making use of

the other two groups,we obtain the following system of differential equations:

(R + r)-- + - 1 + Rr '(ri 2 ) = 0

[137.2]
dil di + 1

RrO'(rij)1Lj + (R + r)- +2 i2 = 0

I12

A V I_2 \

i, iE

Figure 137.1

* This device is described in Reference (15).

0 1. 0 , 11IN M



~~~~IIYIIY11

31

This system reduces to the following equations:

di (R + r) - Rr'(ri 2 )

dt R 2 r 2 '(ril) '(ri 2) - (R + r) 2

i [137.3]
di 2  (R + r)- - Rr '(ril)

dt R 2r 2 '(ri 1) '(ri 2) (R + r) 2

which are of the form

dil P(i 1 ,i 2) di 2  Q(i 1,i 2)
dt U(i,i 2) dt U(i,i) [1374]

One notes the symmetry of Equations [137.3] with respect to the variables i

and i2; this symmetry is due, of course, to the symmetry of the circuit.

The phase trajectories in the (i1,i2)-plane are given by the

equation

di 2  Q(i 1,i 2 ) 1375
di 1  P(i 1, i 2 )

From the explicit values of the functions P and Q, Equations [137.3], one

observes that the origin i] = iS = 0 is a singular point, that is, an equi-

librium point of the circuit.

We first inquire whether closed analytic trajectories are possible

in the system. Applying the negative criterion of Bendixson, see Section 25,
one ascertains that

dP dQ 2(R + r)S+ = constant [137.6]
di m  di2  C

Hence no closed analytic trajectories exist here. The nature of the singular

point il = i2 = 0 is determined by the equations of the first approximation.

If we let 0'(ri)i, = o = 0'(ri2)2 = o = S and if we assume that RrS > R + r,

Equations [137.3] become

di I  R + r . RrS . di 2  RrS . R + r .
dt M 1 M ; dt M 1 M 2[1377

where

M = C[R2 r2 S 2 
- (R + r) 2 ] > 0

The characteristic equation of this system is

2_ 2(R + r) [(R + r) + RrS][(R + r) - RrS]
- A + = 0 [137.8]

The origin (i, = i2 = 0) is therefore a saddle point. One ascertains easily

that, when RrS < R + r, the origin is a stable nodal point, but this case is

of no interest from the standpoint of relaxation oscillations. We will assume

the existence of a saddle point. Since, initially, RrS > R + r and the origin

ill Il,



is unstable, the variables iI and i2 begin to increase. On the other hand,

from the form of the characteristic Ia = (ri), we know, see Section 135, that

I'(ri) + 0 when i -- . The function

U(i, i2) = C[R 2r2 '(ril)'(ri2) - (R + r) 2] [137.9]

which is initially positive, decreases monotonically when il and i2 increase

and is negative when i1 and i2 are very large and are equal. Hence there are

certainly some values of il and i2 for which U= 0. This means that the sys-

tem [137.3] has critical points so that by virtue of the basic assumption,

Section 130, discontinuities must occur at these points. The expression

U(i1 ,i 2) = 0 defines a certain curve F1 in the plane of the variables iI and

i2 . In order to simplify the notation, let us designate by x and y, the val-

ues of ii and i2, respectively, situated on the curve F shown in Figure 137.2.

The equation of this curve is then

R 2r2 &'(rx 1)0'(ry 1) - (R + r)2 = 0 [137.10]

From the form of the functions ¢'(rx l)

2 and 0'(ryl), approximating the slope

B to the characteristic Ia = O(eg) of

the electron tube, one ascertains that

the curve F is a symmetrical closed

curve with the origin at its center

and has the form shown in Figure

137.2. As soon as the representative

d b point following a trajectory has

reached a point (xl,y i) on the curve

r2 F 1 , a jump must occur, and the point

A (x2,y2 ) into which the representative

c point jumps is determined by the con-

ditions of Mandelstam which we now

propose to apply. Since the only form

Figure 137.2 of stored energy in this case is pure-

ly electrostatic, namely, the energy

stored in capacitors, the conditions of Mandelstam require that the potential

differences V' and V" across the capacitors remain constant during the dis-

continuity. This gives the conditions

V' = E - RO(ri2) - (R + r)il; V" = E - RO(ri1) - (R + r)i2 [137.11]

If we designate now the terminal coordinates of the jump by (x2, Y2), the con-

ditions of Mandelstam obviously are
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R.(ry 1 ) - (R + r)x, = Rq(ry2 ) - (R + r)x 2

R4(rx1) - (R + r)y, = Rg(rx2) - (R + r)y, [137.12

In these notations (xl,y 1) represents the critical point on the

curve FI from which the representative point is transferred discontinuously

to some other point (x2,y2) determined by these equations. Since there is

generally a one-to-one correspondence between the points (x1 ,y) and (x2,Y2 ),

we conclude that the locus of the points (x2,y2) is another curve F 2 which is

also a closed curve symmetrical with respect to both variables il and i2 since

the circuit is entirely symmetrical.

The phase-plane representation of the behavior of the Abraham-Bloch

multivibrator can then be described as follows. Assume that the representative

point has reached a critical point a on the curve F. From this point it jumps

into a corresponding point A on the curve F2 . At the point A begins a stretch

of a continuous analytic trajectory Ab. The point b is another critical point

where another jump bB occurs. At B a second continuous trajectory begins which

ends at another critical point c, from which a new jump cC takes place; at C a

continuous stretch Cd begins which ends at d, and so on.

By a more detailed analysis of such piecewise analytic trajectories

interrupted by discontinuities, it can be shown that the transient behavior of

the Abraham-Bloch multivibrator approaches a stationary symmetrical state,

which is oriented along the bisector of the ii- and i2-axes and which consists

of a continuous stretch a# followed by a jump #Q, then by another continuous

trajectory 9e followed by another jump Ea which closes the "cycle." In this

case, the cycle is uni-dimensional, that is, it is the phase line 9a.

It is apparent that if, instead of assuming the asymmetry of the

initial conditions as we did, only a steady-state condition was aimed at, a

simplification could be made in the differential equations by introducing the

conditions of symmetry, that is, iI = -i2 and 0'(ri,) = - 0'(ri2 ). With this

simplification, one obtains a single differential equation of the first order,

namely,

di (R + r) + Rr&'(ri) i

dt - R 2 r 2 ['(ri) 2 - (R + r) 2 C

which reduces to the form

[Rro'(ri) - (R + r)]di = i [137.14]
dt C

This is identical with Equation [135.2], the equation of an asymmetrical re-

laxation oscillation. We conclude, therefore, that the transient behavior of

the Abraham-Bloch multivibrator is represented by a doubly degenerate system.

As far as the stationary condition described by one differential equation
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[137.14) of the first order is concerned, the multivibrator is represented by

a triply degenerate system, to use the terminology of Section 132.

138. HEEGNER'S CIRCUIT; ANALYTIC TRAJECTORIES

As a second example of a doubly degenerate system, we shall investi-

gate the so-called Heegner circuit (16) shown in Figure 138.1, which is the

same as the circuit of an asymmetrical RC relaxation oscillation shown in Fig-

ure 135.1, the only difference being that there is now an additional capacitor

C2 shunting the resistor R. We propose to show now that the addition of the

capacitor C2 radically modifies the behavior of the circuit. It would be

impossible to see this without the criteria of Section 130.

Vi 12 12

R I I cI

D

Figure 138.1

With the positive directions indicated by arrows, the application

of Kirchhoff's laws gives

Ia = I + I + 2; 1 C1 dt ( R I - rI ) ;
dl

2I, = C2 R I [138.1

Putting Ia = q(krll), as we have previously, and eliminating I, we obtain the

following system of the second order:

dl 1 _ 1 1Id + Idt r C1 rC2

dI 2 _ R - Rrkq'(krI1 )
dt RrC1

R + r - Rrkk'(krI1 )
RrC2

[138.2]

it is observed that this system of differential equations has no critical

points, and hence no discontinuities are to be expected. The only singular

point is II = 12 = 0. Noting that 0'(0) = S is a maximum and that the func-

tion Ib'(krIl)l + 0 when 11l 1 - c, the characteristic equation of the system
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[138.2] is

2 + [ C + R + r - RrkS 1 X + 1 - [138.3]
C R rC2 RrCIC 2

It is noted that the singularity here is not a saddle point. Hence, it is

either a nodal point, if the roots X, and X2 are real, or a focal point, if

they are conjugate complex. In both cases the singularity is unstable if

R + r - RrkS C2 [18.4]
R - C1

If the singularity is unstable, self-excitation from rest is possible. By

approximating the experimental function Ia = ¢(krI1) by a polynomial and by

applying the bifurcation theory, it is possible to establish the existence

of a stable limit cycle. We shall omit this calculation since the fact that

the Heegner circuit is capable of producing continuous self-excited oscilla-

tions is well known.

Although the Heegner circuit does not produce quasi-discontinuous

relaxation oscillations, it is mentioned here as an example of the difficul-

ties which appear if an analysis is attempted on the basis of a more or less

intuitive physical argument. In the meantime, this circuit provides an addi-

tional example for testing the validity of the basic assumption.

139. TRANSITION BETWEEN CONTINUOUS AND DISCONTINUOUS
SOLUTIONS OF DEGENERATE SYSTEMS

On the basis of the preceding argument, one might ask whether a

gradual modification of a given dynamical system, for example, an electric

circuit, might cause a transition from continuous performance to quasi-

discontinuous performance, or vice versa. It will now be shown that such a

transition is indeed possible and that its mathematical formulation can be

reduced to the question of the appearance, or disappearance, of critical

points as a result of the variation of a certain parameter in the differen-

tial equations. In order to show this, let us consider a slightly modified

Heegner circuit such as that shown in Figure 139.1. The modification in ques-

tion is that the capacitor C2 , instead of being connected to the point B, is

now connected by an adjustable sliding contact to some point E along the re-

sistor r, as shown. Let r1 be the resistance between the points B and E and

r2 be that between E and D, where ri + r2 = r and r1/r = 8. Proceeding as we

did in Section 138, we obtain the following system of equations:

dl _ 1 1
dt )rC (1 - ,)rC 2 2

[139.11

S [fr + R - rR'kr(I, + 12)] - [r + R - rR'kr(I1 + I,2)] 12

dt (1 - f)[R + 8r - frRk'kr(I1 + fl 2 )]
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Figure 139.1

It is apparent that for # = 1, that is, r, = r, the circuit reduces to that

shown in Figure 135.1 where a discontinuous performance occurs. For f = 0

and r = 0, we have Heegner's circuit, which produces continuous oscillations.

For sqme intermediate value of 8, the co-factor of (1 - 6) in the denominator

of the second equation [139.1] may vanish, which means that-the otherwise con-

tinuous oscillation will undergo a dis-

continuous jump parallel to the I2-axis

I2 as shown by the broken lines in Figure

139.2. This generally occurs when the

system [139.1] is characterized by a

saddle point, and the transition range

is at the point where an unstable focal

point degenerates into a saddle point,

II see Figure 18.1.

We shall not enter into a fur-

ther study of these complicated and rel-

atively unexplored phenomena. It is suf-

ficient to emphasize once more that their

apparent complexity is related to the ap-

pearance, or disappearance, of critical

Figure 139.2 points in the differential equations.
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CHAPTER XXIII

MECHANICAL RELAXATION OSCILLATIONS

140. INTRODUCTORY REMARKS

To date, mechanical relaxation oscillations have been studied less

than electrical ones. As was mentioned in the introduction to this report,

which appears in Part I, two principal reasons account for this. First, the

determination of the parameters of a mechanical system is generally more com-

plicated than the determination of the parameters of an electric circuit.

Secondly, mechanical relaxation oscillations always appear as undesirable par-

asitic phenomena, and the endeavor of engineers is directed toward their elim-

ination rather than their study. These phenomena generally take the form of

"jarring" motions resulting from dry friction, misalignment of machinery, and

similar factors. Whether any useful'applications of these effects can be found

is difficult to say. Very likely this state of affairs will continue until the

laws of friction, which usually account for the appearance of such effects,

are better understood and can be controlled with a prescribed degree of relia-

bility. For the time being, the whole subject of mechanical relaxation oscil-

lations is purely academic.

In addition to mechanical relaxation oscillations proper, of which

we will indicate examples in Sections 141 and 142, there exists a class of

oscillations maintained by periodically timed impacts. These oscillations

also exhibit quasi-discontinuous behavior describable by piecewise analytic

trajectories. These impact-maintained oscillations can hardly be considered

to be of a relaxation type, although very frequently, and perhaps improperly,

they are classified as such. Typical examples of these systems are clocks

and quenched spark oscillators, in which the energy of a linear dissipative

'dynamical system is increased periodically in a quasi-discontinuous manner by

special timing. We shall leave the investigation of impulse-excited systems

to a later chapter and will investigate here a simple mechanical system of a

pure relaxation type.

Let us consider a non-linear differential equation of the form

mi + kx = - F(i) = - pf(x) [140.1]

where F(i) is a certain non-linear function of velocity which we shall iden-

tify with friction. If p is small, Equation [140.1] is of a quasi-linear type

and can be discussed by the standard methods of Part II. More specifically,

for particular forms of the function f(x) self-excitation may occur, and the

oscillation may approach a stable limit cycle, as was studied in Part I in

connection with Froude's pendulum; see Section 8.



When p is large, Equation [140.1] cannot be solved by existing ana-

lytical methods, and at present the only guide to its solution is the qualita-

tive analysis of Lienard;* see Section 36. We know from his analysis that the

periodic trajectory of the differential equation when p is large generally

consists of two pairs of branches. On one pair of branches the motion of the

representative point is slow and the displacements are large, so the system

remains for a relatively large fraction of its relaxation period in that re-

gion. On the other pair of branches, however, the motion is very rapid. This

phase of the motion is of very short duration so that, in spite of the large

values of velocity and acceleration prevailing during these short fractions of

the cycle, the coordinate has no time to change appreciably. Li6nard's analy-

sis fails, however, to determine the "corners" connecting these branches in a

closed analytic curve; thus a rigorous analytic solution is still lacking.

The mechanical relaxation oscillations caused by friction exhibit

the familiar picture previously studied. In fact, there are time intervals

when the slow motion becomes a state of rest, followed by an interval of ex-

ceedingly rapid motion, followed by another period of rest, and so on. We are

thus confronted with a special type of relaxation oscillation appearing as a

kind of "jarring" motion.

141. QUALITATIVE ASPECTS OF A MECHANICAL RELAXATION OSCILLATION

Since a condition of degeneration, as previously shown, is essential

for the appearance of quasi-discontinuous solutions of a differential equation

of the second order and since we are trying to approximate the relaxation

process by a motion in conformity with the Lienard analysis, we must consider

a mechanical system with a very small mass.

Under this assumption, the motion of the system is determined mainly

by the balance between the restoring force kx and the friction force pf(f).

When this balance is momentarily lost at a certain instant of the cycle, the

acceleration and the velocity of the system may suddenly reach very large val-

ues since, by our assumption, the mass is very small.

When m= 0, Equation [140.1] degenerates into the equation

F() = - kx [141.1]

which describes the pair of branches of the Lienard cycle on which.the system

remains a relatively long time and the coordinate changes appreciably. The

balance between the restoring force and the friction force takes place on

these branches. Differentiating this equation, one has

* Recent research (12) of J.A. Shohat gave hope of bridging this gap, but these efforts have been

interrupted by his untimely death.



IIIk,.I.IIII

F'(U)i = - ki [141.2]

If the function F( ) is such that F'(i) < 0 in a certain region, Equation

[141.2] shows that this region is unstable. If at a certain point in this

region F'(i) == 0, the acceleration Y may acquire a very large value so that

a new balance of forces will appear in which the term mi will play a role in

spite of the assumed smallness of the mass m. We thus reach the conclusion

that this condition characterizes the second pair of branches of the Lienard

cycle which are traversed in a very short time. During this phase of the

cycle the acceleration is very large and the velocity varies in a quasi-dis-

continuous manner by a finite quantity, but the coordinate does not change

appreciably because of the short duration of this phase.

The qualitative aspect of the motion in this case is similar in all

respects to that which occurs when a ball strikes a wall. However, the under-

lying dynamical facts are different. For a mechanical impact, the quasi-

discontinuities in velocity and acceleration described above are due to an

external force, the reaction of constraint when the ball strikes the wall.

In Equations [141.1] and [141.2] these discontinuities appear as a result of

the disappearance of the balance of forces expressed by Equation [141.1] and

are due to the assumed peculiarities of the function F(i).

The preceding argument can be condensed somewhat by putting i = y

in Equation [141.2], which gives

dy _ ky [141.33
dt F'(y)

It is apparent that this equation has a critical point whenF(y) = 0

and, hence, ceases to describe the phenomenon at that point. In order to de-

termine the discontinuity by which we idealize the quasi-discontinuity of the

physical problem, we must again apply the condition of Mandelstam. In the

idealized case, m = 0; hence, the kinetic energy is zero so that the total en-

ergy is the potential energy, which is a function of the coordinate x. From

the condition of Mandelstam we infer, therefore, that the function x(t) is

continuous although it has a discontinuous second derivative, as is to be

expected. The situation is thus similar to that which we have studied in

Chapter XXI in connection with electrical relaxation oscillations. It also

resembles the results obtained in the theory of mechanical impacts, with the

difference, however, that the quasi-discontinuity here arises from the exist-

ence of a critical point in the differential equation and is not due to exter-

nal impulsive excitation as it is for a mechanical impact where the energy

also changes abruptly.



142. MECHANICAL RELAXATION OSCILLATIONS CAUSED BY NON-LINEAR FRICTION

Since Equation [141.2] has a critical point for F'(i) = 0, we con-

clude that relaxation oscillations are possible in a system of this kind when-

ever the friction force considered as a function of the velocity i possesses

extremum values. Moreover, the general condition specified in Section 133,

jhat is, that F(i) should be a two-valued function of x, must also be ful-

filled.

In practice, these theoretical conditions are frequently encoun-

tered. Thus, when a shaft rotates in a bearing, Sommerfeld (17) has indicated

that the friction force goes through a minimum for a speed vl given by the

equation

1 62P
v 15.1 Xr [142.1]

where P is the pressure,

X is the coefficient of viscosity of the lubricant,

r is the radius of the shaft, and

6 is the thickness of the oil film.

Chaikin and Kaidanowski (18) have investigated mechanical relaxation

oscillations by the device described in the following paragraphs.

A relatively small mass a forming a

Prony brake engaged frictionally a rotating

shaft K, as shown in Figure 142.1. The mass

a was centralized in a definite position by a

s rather strong spring S. A definite friction

force was secured by means of another spring

not shown, pressing a against the shaft K.

K The differential equation of motion

of a, neglecting its mass (which results in

Sthe degeneration of the equation to the first

Figure 142.1 order), is

r(F[( - )r]) = co [142.2]

where F(v) = F[(. - )r] is the friction force, a non-linear function of the

relative peripheral velocity v = (Q - )r,

Q is the angular velocity of the shaft K,

4 is the angular velocity of a for small departures 4, and
c is a constant depending on the spring's strength.

The approximate form of the function F(v) is shown in Figure 142.2. It is

noted that the tangent to this characteristic is horizontal at the point

B(v = 0). When v = 0, a moves together with K, and 4 = 9. When a is not mov-

ing, # = 0 and v = v e = Dr. To the right of the point v = vo the mass a and
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the shaft K move in the same direc- F

tion; to the left of v = vo they

move in opposite directions. Because D

of the constraining spring S no con-

tinuous motion of a is possible;

there may, however, be a position of

equilibrium for which ' = 0. As long B C--

as v = 0, that is, = 9, the spring

S is gradually stretched, and the

friction force F is a static force

which may have any value whatever Figure 142.2

provided F : F, where F, is the

limit of static friction. When a is moved by the amount o$, for which c€l =
F1r, the limit of static friction is reached. During this phase (v = 0) of

the phenomenon, the representative point moves along the axis of F until it

reaches the point D, the limit of static friction.

Differentiating Equation [142.2], we have

- r2F'[(9 - )r] = c€ [142.3]

where F' designates.dF It is seen that F' < 0 when and have the same

signs, and F' > 0 when they have opposite signs. Moreover, for v = vo the

quantity ' goes through zero and changes its sign. If the speed 9 of the shaft

is relatively small, the point M will be on the part BD of the dynamical char-

acteristic of friction which may be considered here as the phase line of the

process, see Section 134. On the part BD of the phase line, F' < 0, so that

and € have the same sign; this part of the phase line is therefore unstable,

as shown by the arrows. It follows, therefore, that when the representative

point has reached the point D during the "static friction period" CD of the

process, it cannot pass onto the dynamic characteristic DBA. We conclude

that the point D is a critical point.

One can illustrate this also by putting # = y in Equation [142.3],

which gives
dy cy

dt r2F'[(Q - y)r]

From this expression it follows that -= = c at the point D
dt

since F'[(£ - )r] = 0 at this point. At D, the representative point under-

goes a discontinuity, the direction of which is parallel to the v-axis because

here the discontinuity occurs at a constant potential energy, as required by

the condition of Mandelstam. The jump terminates at the point A where the

characteristic is met, and the subsequent motion of the representative point



is again continuous along the branch BC until another critical point is en-

countered at the point B where F' = 0. Here another jump DA occurs, after

which the phase CD of static friction begins anew; during that phase of the

motion the representative point again moves continuously along the branch CD

of the cycle DABCD.

One notes an analogy between this example of a mechanical relaxation

oscillation and the example of the relaxation oscillation of a neon tube, Sec-

tion 134. In both examples, relaxation oscillations are possible if the phe-

nomenon is confined to an unstable region of the characteristic. In the neon-

tube oscillator this is accomplished by adjusting the resistance so that the

straight line E - V cuts the non-linear characteristic, the phase line of the

process, on its unstable branch. With the brake described in this section, a

similar effect is obtained by running the shaft K at a relatively slow speed

9 so as to have the point M in Figure 142.2 in the region where F' < 0. There

are no relaxation oscillations in a neon-tube circuit if the line V inter-
R

sects the characteristic on its upper stable branch, see Figure 134.2; like-

wise, no mechanical relaxation oscillations are observed, see Figure 142.2,

if the angular velocity 9 of the shaft is large enough so that the point M'

corresponding to v0' = Qr is on the stable branch CD of the friction charac-

teristic. The piecewise analytic cycles ABCDA in both Figures 134.2 and 142.2

are indicated by the corresponding letters. Thus, for example, the branch CD

corresponds to the period when the capacitor is charged (Figure 134.2) and to

the period when the static friction force F increases with no slipping be-

tween a and K (Figure 142.1). Branch AB in both examples corresponds to con-

tinuous trajectories of a non-linear differential equation. In both figures

the discontinuous stretches DA and BC are determined by the condition of

Mandelstam, and so on. Plotted in

A the (0,t)-plane, the curves of the

mechanical relaxation oscillations

observed by Chaikin and Kaidanowski

have a typical "saw-tooth" appearance,

see Figure 142.3, characterizing elec-

trical relaxation oscillations of a

similar nature.

This discussion emphasizes

o t the features which all relaxation

Figure 142.3 oscillations have in common.



CHAPTER XXIV

OSCILLATIONS MAINTAINED BY PERIODIC IMPULSES

143. INTRODUCTORY REMARKS

We have defined "relaxation oscillations" as stationary self-excited

oscillations exhibiting quasi-discontinuities at some points of their cycle.

One of the fundamental properties.of these oscillations is that their station-

ary state does not depend on the initial conditions of the system. In that

respect they resemble the continuous oscillations of the limit-cycle type

studied in Chapter IV with the difference, however, that because of the exist-

ence of discontinuous stretches their properties are different from those of

continuous oscillations.

As a somewhat different type of oscillation appear the so-called

impulse-excited oscillations. In some respects these oscillations resemble

relaxation oscillations as defined above; in some other respects they differ

from them.

The feature common to both types of oscillations is that they can

be represented in a phase plane by piecewise analytic trajectories. For both

types, also, the stationary state does not depend on initial conditions;

moreover, the stationary trajectories of both are "closed" by discontinuous

stretches.

The essential difference between these two types of oscillations

lies in the physical process during the quasi-discontinuous rapid changes,

idealized as mathematical discontinuities. In the pure relaxation oscilla-

tions with which we have been concerned in preceding chapters of Part IV, the

energy stored in the system during the quasi-discontinuous interval does not

change appreciably. This results in an idealized picture of these phenomena

with an assumption that the energy does not change in the interval (to - 0,

to + 0). Moreover, the existence of these discontinuities, as we saw, was

formally reduced to that of the critical points in the differential equations

describing the system.

For the impulse-excited oscillations which we are going to investi-

gate in this chapter, a difference exists, in that the discontinuous stretches

in the representation of the phenomenon by phase trajectories correspond pre-

cisely to the impulsive changes of the energy of the system.

In the investigation of relaxation oscillations proper, we had to

rely mostly on the theory of electric circuits. We shall begin the study of

impulse-excited oscillations by investigating the behavior of a mechanical

device known for centuries, the clock.

_~~_11



144. ELEMENTARY THEORY OF THE CLOCK

A clock is a mechanical device consisting of three principal

elements:

1. An oscillatory dissipative system, for example, an ordinary pen-

dulum, a torsional pendulum with a hair spring, etc.

2. A source of energy, for example, a weight, a main spring, etc.,

which has to be replenished periodically ("winding" the clock).

3. An escapement connecting periodically the first and second

elements.

The purpose of the escapement is to release periodically the energy stored in

the second element in the form of an impulse and to apply this impulse to the

first element at an appropriate instant of the oscillation.

Since the instant at which the impulse is released by the escape-

ment is uniquely determined by the motion of the system, the system is auton-

omous in the sense that all three elements, 1, 2, and 3, of the mechanism

are connected so as to form a single unit, just as a thermionic generator

forms a single autonomous unit comprising an oscillating circuit, a battery,

and an electron tube with its grid control circuit. We shall see later that

it is possible to arrange the operation of an electron-tube circuit so that

it resembles the performance of a clock, but in general the mode of operation

of a clock differs in other respects from that of the thermionic oscillators

commonly used.

The escapement communicates to the oscillatory system periodically

timed impulses which we shall first idealize as instantaneous and of a con-

stant value a. Let v, be the velocity of the system immediately after the

first impulse, from which instant we wish to study the motion. If we assume

that the system is a linear dissipative one with a decrement d per cycle, the

velocity v2' immediately before the second impulse will be v2' = vle -d. Immedi-

ately after the second impulse, the velocity will be v2 = v 2' + a = vle-d+ a,

where a is the impulsive increment of the velocity, and so on for subsequent

impulses. A stationary state will be reached when, beginning with a certain

number n of impulses, v, v,~, v, + 2 V ".. v0 , which gives

ao 1 - e - d  [144.1]

The representation of the process in the phase plane is shown in

Figure 144.1, where one spiral trajectory S of the system is indicated. As

was shown in Section 5, these spirals form a continuous family so that through

every ordinary point of the phase plane passes one and only one such spiral.

Let us designate as u the segment AB of the x-axis. This intercept represents
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the change of the initial radius vector izv

OA after one revolution 27. From the

properties of the logarithmic spiral it

is apparent that the intercept u, con- B

sidered as a function of ro = OA, is a uA

monotonic function u(ro). Since the

spirals S form a continuous family, it

is also obvious that the function u(ro)
is a continuous monotonically increas-

ing function of the radius vector r. On c

the other hand, by our hypothesis, the

impulsive changes of the velocity v due

to the operation of the escapement are

constant and hence are represented by Figure 144.1
constant jumps a along the x-axis. It

follows, therefore, that a steady-state condition will be attained when a ra-

dius vector ro = OA is reached for which u(ro) = a. This stationary condition

is represented by a piecewise analytic cycle BCAB shown in Figure 144.1 by a

heavy line; this cycle consists of a convergent spiral BCA (since, by our

assumption, the system is dissipative) "closed" by a discontinuous jump AB

representing the impulsive increase of the velocity v caused by the impact.

It is also clear that such a stationary piecewise analytic cycle BCAB is of

a stable limit-cycle type in the sense that, if one starts from the relatively

small values of the initial radius vector ro = OA, the value of a is initially

greater than the corresponding value of the intercept u(ro) in this region of

the phase plane. Physically this means that the energy communicated by the

impulse is greater than the amount of energy which the system is able to dis-

sipate during one cycle 2n, which will result in the fact that the subsequent

radius vectors ro = OA will grow initially. If, on the contrary, the initial

velocity of the system is sufficiently great, the dissipation of energy per

cycle is greater than the impulsive increments communicated by the escapement

so that the spirals will gradually shrink. The stable condition is reached

when the impulsive increments a are just equal to the intercepts u(ro ) in a

particular region. In view of the continuity and the monotonic character of

the function u(ro), it is clear that there exists one and only one piecewise

analytic limit cycle BCAB of the clock and it is stable. This elementary

discussion accounts for the fact that the clock's performance is of a limit-

cycle type and as such does not depend on initial conditions, see Chapter IV;

in other words, the ultimate performance of a clock does not depend on how

it has been started. Once it is started the operation of the clock depends



entirely on the parameters of the system and has nothing to do with the ini-

tial conditions. The converse is true for a mathematical pendulum.

In one respect the elementary theory discussed above fails to ac-

count completely for the observed facts. For, if a clock is wound, this sim-

plified theory indicates that the clock should start by itself even if the

initial disturbance is infinitely small. In other words, it predicts a 8oft

self-excitation of the clock. In reality, unless a clock is given a certain

minimum disturbance, for example, shaking, it will not start. This threshold

is partially due to .the existence of Coulomb friction not taken into consider-

ation here. There is, however, another reason why the elementary theory is

not complete, namely, our assumption that the jump a in velocity caused by the

impact remains the same whatever the velocity of the system. Andronow and

Chaikin (13) have shown that by a slight refinement of the preceding theory it

is possible to explain better the observed facts.

Let us assume that the change of kinetic energy during the impact

remains constant, that is,

2 2
my 1  mo = constant

2 2

In the phase-plane representation this is equivalent to the condition

yz - = h2 [144.2]

where h is a constant determined by the properties of the escapement and yo and

y1are the values of the radius vector immediately before and immediately after

the impact. It follows, therefore, that the jump a in the phase plane, instead

of being constant as was originally assumed, is now given by the equation

a= Y - [144.3]

that is, it decreases with increasing

Figure 144.2

velocity yo according to a hyperbolic

law, as shown in Figure 144.2.

This refinement of the theory,

although it leads to conclusions con-

cerning the existence of a stable piece-

wise analytic limit cycle which are sim-

ilar to those obtained by the original

simplified theory, is not yet sufficient

to explain the fact that a clock is a

system with a hard self-excitation.

In order to extend the theory

still further it is necessary to inves-

tigate how Coulomb friction manifests

itself in the representation of motion

by phase trajectories.

0
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145. PHASE TRAJECTORIES IN THE PRESENCE OF COULOMB FRICTION

The customary idealization of Coulomb, or dry, friction consists in

assuming that the friction force fo remains constant during the motion and

changes its sign with a change of the direction of motion, as shown in Figure

145.1.
The motion of a system with one degree of freedom in the presence of

Coulomb friction cannot be described by one differential equation but requires

two equations, one for i < 0 and the other for i > 0, namely,

mx+ kx = + fo; m + kx = - fo [145.1]

Putting = 2 and Ifol = aw0
2 , these two equations are

+ Wx = + awo  when i < 0
2 2 [145.2]

S+ wo = - awo  when i > 0

Introducing the variables x, = x - a for the first equation [145.2] and

x 2 = x + a for the second, one obtains two equations, namely,

Y, + wzX, = 0 when i < 0
[145.3]

2 + wo2 = 0 when ' > 0

These equations are obviously identical, with the difference, however, that

the center of oscillation is displaced from +a to -a, and vice versa, each

time i changes its sign. It is to be noted that i itself does not enter into

the equations of motion. The "change of equations" occurs at the instant when

i = 0. In the (x,t)-plane such a motion can be represented by the curve shown

in Figure 145.2. Assume that initially the system has been deviated to the

right (zxe > 0) and then released with an initial velocity zo, = 0. The sys-

tem will then move to the left (i < 0). As was just mentioned, this is a

sinusoidal motion with respect to the axis t1 displaced a distance +a from

Figure 145.2

- 111111

Figure 145.1



the t-axis. At the point B the velocity i is equal to zero, and the amplitude

is Ix02 = IX0 1 - 2al with respect to the t-axis. At the point B the change of

equations takes place, and the "acting abscissa axis" is now t2 displaced a

distance -a from the t-axis. With respect to the t2-axis, the motion is again

sinusoidal, so that the point C (at which x = 0) is at the same distance from

the t2-axis as the point B was originally. With respect to the t-axis, how-

ever, the amplitude of the point C is x 3o = x02 - 2a. It is seen that with re-

spect to the t-axis the amplitudes decrease in an arithmetic progression with

the constant difference 2a. The motion stops after a certain number of swings.

The time interval between two consecutive maximums (A and C in Figure 145.2) is

the same as for a harmonic oscillator, as follows from the preceding discussion.

It is to be noted again that the curve ABC-** is a piecewise analytic curve

which loses its analyticity at the points A, B, C, ..., at which there is a dis-

continuity in the second derivative.

The representation of such a motion by phase trajectories is obtained

if we observe that each of the equations [145.3] is represented by an elliptic

trajectory around the vortex point, see Section 1.

If we letz = y, Equations [145.3] become
dt

dy _ _ W(x -a) when y < 0
dx y[145.4]

=dy _ _ o x+ a) when y > 0
dx y

Integrating these equations, one gets

(-- a)2  y2(x - 2a) + R = 1 when y < 0

2 12 [145.51
(x + 2  + -1 when y > 0

where R i and R 2 are the constants of integration determined at the end of each

preceding interval, that is, when & = 0. Equations [145.5] represent two fam-

ilies of ellipses, F, and F2 , whose centers are displaced on both sides of the

origin by a constant quantity ±a, as shown in Figure 145.3. Let us consider

the motion beginning with a point A representing the initial conditions on one

of the trajectories F 2 which is drawn in a heavy line. At the point B, where

y = 0, the change of equations takes place, and the representative point goes

onto the trajectory F, passing through B. The motion on that trajectory will

continue up to the point C at which the representative point will go onto a

trajectory F2 which passes through C. On that trajectory the change of equa-

tions should occur at the point D. It is apparent, however, that such a tra-

jectory would be confined within the zone limited by the broken lines x = +a

and x = -a, which characterize the zone of static friction. Hence once a tra-

jectory is reached which does not emerge from that zone, the motion ceases.
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It is thus seen that idealized Y

Coulomb friction is capable of being rep-

resented by piecewise analytic trajecto- I

ries formed by elliptic arcs of the two I

families 1r and r 2 with centers symmetri-

cally displaced by a constant quantity a

on both sides of the origin 0. The junc- C 0 B

tion points of the arcs are situated on

the x-axis. At these points the curve has

a continuous first, but a discontinuous o i o2

second, derivative as may be expected

from the fact that the friction force -+a

changes discontinuously at these points.

Instead of having a point of equilibrium, Figure 145.3

systems possessing Coulomb friction have

a line of equilibrium 0102, which means that any point on the segment 0102 is

a point of equilibrium and that the segmenf 0102 itself is the zone of static

friction.

Making use of these conclusions regarding the form of trajectories

in the presence of Coulomb friction, Andronow and Chalkin have further elabo-

ated the theory of the clock. We shall omit the details of their theory and

will merely indicate their argument as well as their final conclusions.

By introducing "angular time" 7 = w0 t, as we did on a number of oc-

casions, Equations [145.3] can be reduced to the form

d2

d2 [145.6]

d-2 + x 2 = 0 when X > 0

The trajectories of these equations are two families C1 and C 2 of concentric

circles whose centers are displaced on the x-axis on both sides of the origin

by a fixed quantity a. By reproducing the preceding argument and by expressing

the condition that the ultimate trajectory always emerges from the "dead zone"

of static friction, these authors show that, if the trajectory is to emerge

ultimately from the dead zone, the impulsive change of kinetic energy h
2 must

be equal to or greater than 16f 0
2 , where fo is the Coulomb force. This means

that a clock is a mechanism with a hard self-excitation. In other words, un-

less the condition stated above concerning the relation between h
2 and 16f 0

2

is satisfied, a clock will not start. If, however, this condition is satis-

fied, the clock will start and will approach its piecewise analytic limit

cycle irrespective of any other aspects of the initial conditions.

___ 1,



146. ELECTRON-TUBE OSCILLATOR WITH QUASI-DISCONTINUOUS GRID CONTROL

We will investigate in this section the behavior of an electron-tube

circuit exhibiting features resembling those of a mechanical system possessing

Coulomb friction and acted on by impulses. The analogy, as we shall see, is

purely formal, but it will be helpful in approaching from a somewhat new view-

point the difficult subject of self-excited oscillations. The interesting

feature of the analysis made by Andronow and Chaikin is that it permits inves-

tigating questions concerning the establishment and stability of self-excited

oscillations by a method similar to that used in the preceding section, except

that here one may have negative Coulomb friction maintaining the oscillations.

Consider the circuit shown in Figure 146.1 with positive directions

and customary notations indicated. The symbol x designates the current in the

inductance L. The differential equation of the circuit is

L + Rx + (x - I( ) dt = 0 [146.1]dt C

Differentiating and rearranging, we obtain

1 1
Li + Ri + - x = C f(e,) [146.2]

where la = f(eg) is the non-linear characteristic of the electron tube. We

will consider a peculiar performance of this circuit, namely, the one which

appears when the coefficient of mutual inductance Mis made very large. As a

result of this, the amplitude legl of the grid-voltage variation will also be

large; this will cause the electron tube to act more or less as a switch oper-

ating between the points A, when Ia = 0, and B, when Ia = I,, where I, is the

saturation plate current. It is apparent that when the grid potential varies

between the limits teg, as shown in Figure 146.2, the interval AzB corre-

sponding to the variations t eg,, which are instrumental in causing the plate

current to vary, is small in comparison with the total interval AB, and it is

possible to idealize the performance as a discontinuous characteristic such as

a

V, ta XIa

Le + edg
L x vJ c 9 1, D e

Figure 146.1
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that shown in Figure 145.1. Instead of being described by one non-linear dif-

ferential equation [146.2], the phenomenon will be described alternately by

two linear differential equations

x + 2hi + Woz = O; + 2hi + W = w [146.31

where 2h =;R 2 = and w021 = f(+ e). It is obvious that the change

from one equation to the other occurs at the point where i changes its sign.

We shall assume that the connections are made so that M > 0, e, > 0

when i < 0, and eg < 0 when i > 0. We shall investigate the second alternative

later.

In view of our idealization, the anode current Ia will undergo dis-

continuities in the neighborhood of i = 0. These discontinuities have to pass

through the capacitor branch of the oscillating circuit since in the inductive

branch no discontinuities of current are possible. However, the discontinui-

ties LL in the voltage across the inductance are possible. We conclude,
dt

therefore, that the quantities which are capable of varying discontinuously

are Ia in the capacitor branch and Ld across the inductance. The quantity z

remains continuous. Another continuous quantity is the voltage V across the

capacitor, as was mentioned in Section 131.

It is noted that the change from one differential equation to the

other, mentioned above, resembles the situation which we have already encoun-

tered in connection with Equations [145.2] describing the behavior of a system

possessing Coulomb friction, and may follow a similar argument. We can write

the second equation [146.3] as

2-
+ 2h + wox = 0 [146.4]

where X = x - I,. In this form the first equation [146.3] and Equation [146.4]

are two linear differential equations possessing focal points on the t-axis

at a distance I, from each other. We can, therefore, repeat the argument used

in connection with Figure 145.2. Let us consider the phenomenon from the in-

stant when the amplitude is xz and the electron-tube switch is off, which

corresponds to the first equation [146.3]. During the first half-cycle the

original amplitude zx, see Figure 146.3, will be reduced by damping and will

become x2. It is noted that x2 < X1 if referred to the t-axis. At the point

B the electron-tube current jumps suddenly to the value I, and, as we saw, the

new abscissa axis is now tj, displaced above the t-axis by the quantity I,.

With respect to this tl-axis, the initial amplitude is now x2 = X2 + I, and

although during the following half-cycle the amplitude is again reduced with

respect to this axis because of the dissipation of energy, the pos4tion of the

point C with respect to the t-axis may be at a higher level than that of A if
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I, is large enough. Beginning with

A T the point C, we can resume the same

argument which we used at the point
A, and so on.

I X3 It is seen that, because of

this quasi-discontinuous timing of

the electronic switch, the amplitudes

SI / T in the oscillating circuit may grow,

2 thus outweighing the effect of the
/x i2 dissipation of energy. It is easy to

express this condition mathematical-

s ly. If one designates by x the ampli-

tudes referred to the t-axis and by

7 those referred to the ti-axis, one

Figure 146.3 has

hT hT

2 le 2; = X l e 2 + I"

hT 2hT hT 2hT hT

3 = x 2e 2 = xle 2 + Ie 2; X 3 = 3 + I = xle  2 + 1, e 2 + I

If the amplitude reaches a stationary value, x, = x, = xo, which gives

hT

I,(1 +e 2 ) I,
Xo g hr [146.51

1 - ehT 1 - e 2

This shows that a stationary amplitude x0 is determined solely by the proper-

ties of the circuit and is independent of the initial conditions.

The question of the stability of these oscillations can be investi-

gated graphically by comparing their subsequent amplitudes. For instance, take

the relation between xz and x3 , namely,

-hT hT

x = xe + 18(1 + e 2) [146.6]

In the (x,, 3)-plane, see Figure 146.4, this relation is a straight line with
hT AhT

a slope tan a = e T, and an intercept I,(1 + e 2) = A. On the other hand,

if the oscillation is stationary, xi = x3, which represents the bisector of

the angle between the x,- and x3-axes. The point M of intersection of these

lines determines the stationary amplitude x0 . If the initial amplitude x1
is not stationary, the subsequent amplitude will be x3 ' and the corrected am-

plitude will be x3' on the x1 -axis to which the following amplitude x,' will

correspond on the x3-axis, and its corrected value on the x,-axis will be x5.
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By the interplay of the subsequent

corrections it is seen that any "
non-stationary amplitude tends to

approach the stationary value x0.

This argument is also valid when

the initial non-stationary ampli- x-

tude is larger than the stationary

amplitude xo . Hence the stationary x

amplitude is stable. It should be

noted that if we reverse the con-

nection of the coils, the displace-

ment of the x -axis with respect

to the x-axis by the quantity I, I

will occur in a direction oppositeI

to that shown in Figure 146.3. X1  3  XO x

This will result in a reduction of

the subsequent amplitudes similar Figure 146.4

to that found in connection with

Figure 145.2 illustrating the action of Coulomb friction. Viewed from this

standpoint, the circuit behaves as if it had a kind of negative Coulomb damp-

ing when M > 0 and a positive Coulomb damping when M < 0. The self-excitation

of the circuit occurs when the circuit is characterized by negative Coulomb

damping.

147. PHASE TRAJECTORIES OF AN IMPULSE-EXCITED OSCILLATOR

The property of negative Coulomb damping of the circuit investigated

in the preceding section becomes still more striking if we analyze the phase

trajectories of the system [146.3] which we write in the form

i + 2hi + w2x = 00 
[147-1]

xz + 2hil + (0 x2 = 0

where x, = x - I,. Since each of these equations describes a damped oscilla-

tor, each is represented by a spiral trajectory approaching a stable focal

point; see Section 5. The focal points of these equations are separated by a

constant distance I, along the x-axis in the (x,f) phase plane. Figure 147.1

shows the phase diagram of the motion corresponding to Equations [147.1].

Point 0 is the focal point of the first equation [147.1], and O that of the

second equation. Let us start from a certain arbitrary initial condition,

represented, for instance, by a point 1 on the negative abscissa axis. Through

Point 1 passes the spiral trajectory 1m2 having O as its focal point and rep-

resenting the first equation [147.1]. At the point 2 the "change of equations"

MEI * blI iIl



occurs, and the phenomenon is now

governed by the second equation

[1147.1] having its focal point at

SO. The second stretch of the spi-

ral trajectory 2n3 ends at the

point 3, where the first equation

A_ U Cbegins to describe the phenomenon
3 1 bo 2 4 again; this arc of the spiral tra-

S -- jectory 3p4 ends at the point 4,

and so on. It can be shown that

the piecewise analytic trajectory

--2n3p4 .. ultimately approaches

a closed curve ABCDA formed by

two spiral arcs, ABC with O as
Figure 147.1 its focal point and CDA with 6

as its focal point. One obtains
a similar conclusion if, instead of starting with a point 1, one starts with
a point 1' exterior to the closed curve ABCDA and repeats the argument. We
shall designate by r the radius vectors with respect to the focal point O when
the representative point moves on the upper spiral arcs, and by r the radius
vectors with a focal point at 6 when the representative point moves on the
lower arcs. For the subsequent radius vectors along the x-axis, we have the
following obvious relations:

7rh 7rh 7rh n7h 7rh
r2 = rae w ; r = r2e ( = (r 2 + a)e- I = (r e 1 + a)e- -..

One obtains easily the following general expressions:

[ rh 27rh ( k 2) Eh (k l)r hrk a[1 + e e + + e ] + rie -; rk = rk -a

[147.2]

r, = a 1 + e + + (e + re - ) r, = -- a

where k is an odd integer and s is an even integer. If k and s increase indef-
initely, that is, if the number of turns of the piecewise analytic spiral
1m2n3p4... increases indefinitely, the spiral approaches the closed curve
ABCDA, previously mentioned, in the manner specified in Section 22. One sees
this immediately from the expressions given above for rk and r, when k - oo

and s -> oo, namely,

lim (rk) a h lir (,) [147.3]
1 - e-- -,o
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The conclusions remain exactly the same if one repeats the argument for a

piecewise analytic spiral 1'm'2'n'3'p'*** starting at a relatively distant

point 1'.

It is thus apparent that the closed curve ABCDA formed by the two

arcs of the logarithmic spirals is a piecewise analytic limit cycle which the

oscillation approaches as t - =. Moreover, this limit cycle is stable. It is

useful to emphasize once more that this limit cycle characterizing stationary

periodic motion is determined exclusively by the constant parameters a = I,

h, and w of the oscillatory system and is entirely independent of initial con-

ditions. This is an essential property of self-excited oscillations, as was

pointed out in Section 22.

It is also worth mentioning that we have obtained these results of

the classical theory by replacing the actual non-linear equation [146.2] by a

system [147.1] of two alternating linear differential equations. Such a pro-

cedure becomes possible only after we have idealized the relatively compli-

cated non-linear characteristic, shown in Figure 146.2, as a discontinuous

step-function like that shown in Figure 145.1. In connection with this it may

be useful to recall the statement made in Section 3 that the really important

difference between linear and non-linear systems is their behavior in the

large and that local properties are of relatively minor importance. This

argument is a typical example of a situation of this kind where a certain

idealization of the local properties of trajectories does not change their

properties in the large and merely simplifies a problem which would otherwise

be extremely complex.



CHAPTER XXV

EFFECT OF PARASITIC PARAMETERS ON STATIONARY STATES OF DYNAMICAL SYSTEMS

148. PARASITIC PARAMETERS

The study of relaxation oscillations in the preceding sections was
made under the assumption of certain simplifying idealizations which resulted

in degenerate equations instead of complete ones containing both oscillatory

parameters (L and C in electrical problems and m and k in mechanical ones).

Although the advantages of such simplifications, as we saw, are

numerous and the results obtained in this manner are generally found to be

in agreement with experimental facts, the introduction of these simplifying

assumptions is not without theoretical difficulties and, in some cases, which

we will analyze here, may lead to certain complications. In spite of the fact

that such cases appear generally as rare exceptions, it is important to ana-

lyze this matter in greater detail now that we are acquainted with the general

method, at least in its present scope.

One of the principal difficulties, noted on several occasions, is

the inconsistency between the number of integration constants appearing in a

degenerate problem and that in the corresponding non-degenerate one. Thus,

for example, if the non-degenerate problem involves a differential equation

of the second order, two constants of integration are necessary to determine

the solution; these constants appear as certain definite physical "initial

conditions." In the corresponding degenerate problem, where the differential

equation is of the first order, one constant of integration is sufficient to

determine a solution. If, however, there still exist two physical factors to

which some initial values can be assigned, these factors cannot have entirely

aroitrary values but must readjust themselves eventually so that a definite

relation exists between them, as was explained in Section 128. The discontin-

uous theory of relaxation oscillations ignores this rather delicate passage

from the solutions of one form to those of the other form, just as the classi-

cal theory of mechanical impacts ignores the unknown dynamics of the collision

process. Both theories follow a somewhat similar argument, namely, the rapidly

changing motion is idealized during a very short time interval as a mathemat-

ical discontinuity occurring in the infinitely short time interval (t - 0,
t + 0), and the loss of information resulting from intentionally overlooking

t~ dynamics of the process is supplemented by additional physical information

which permits solution of the problem in the large although certain local de-

tails are inevitably lost in such a procedure. In the theory of mechanical

impacts this additional physical information is provided by the theorems of

, WAIN
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momentum and kinetic energy as well as by defining a certain empirical coeffi-

cient of restitution characterizing the instantaneous dissipation of energy

' during the impact; likewise, in the discontinuous theory of relaxation oscil-

lations this additional information appears in the form of the conditions of

Mandelstam.

The use of the concepts "infinitely short time interval," "infinite-

ly large acceleration," and so on, instead of the more correct terms "very

short time interval," "very large acceleration," and so on, while convenient

for the description of a phenomenon in the large, is sometimes capable of in-

troducing serious errors in a theoretical argument and of leading to conclu-

sions at variance with experimental facts.

Thus, for instance, in dealing with an idealized (L,R)-circuit, we

describe its behavior by the equation

di
L + Ri = E(t) [148.1]dt

This equation describes the phenomenon with adequate accuracy in a range suf-

ficient for practical purposes (on the scale, say, of milliseconds). If, how-

ever, the behavior of the same circuit is studied in a different range (say,

on the scale of microseconds), this equation may not give a correct answer. In

fact, any resistor or inductance coil inevitably has a small parasitic capac-

ity CP, and if we take this capacity into account a more correct equation will

be

RLC d + L- + Ri 1 = E(t) [148.2]

It was shown in Section 128 that under certain conditions the solutions i(t)

and il(t) of Equations [148.1] and [148.2] may have entirely different fea-

tures locally, although in the large these solutions are practically indis-

tinguishable. For that reason an electrical engineer would prefer to use the

simpler equation [148.1] rather than the more complicated one [148.2]. These

facts are too well known to need further emphasis here. However, they are fre-

quently very troublesome. Thus, for instance, a student attempting to investi-

gate the behavior of a simple circuit by means of a cathode-ray oscillograph,

instead of observing the pattern of curves in accordance with his differential

equation, usually observes what is commonly called "hash," that is, a far more

complicated pattern of numerous harmonics with cross modulation, and so on.

The reason for this is that too many parasitic parameters have been neglected

in forming the differential equation, and consequently the true differential

equation is far more complicated than the assumed one.

In most practical cases such discrepancies are not very serious.

However, in some special instances, analyzed in what follows, difficulties may

arise which lead to paradoxes already noted by certain authors (19) (20).
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A further remark may be useful. Consider the differential equation

of an (L,R,C)-circuit,

1
La + R4 + -q = 0 [148.3]

and assume that L is very small. If L is neglected, one has a differential

equation of the first order. The expression "L is very small" is, however,

rather indefinite in the sense that it is not important to know that L is

small but rather that the consideration of the problem is restricted to the

range in which the term L" is negligible compared with the other two terms.

Still more confusing is the effect of the degeneration when C - O0, which

leads to a meaningless result. If, however, we make C +o, at the limit we

obtain

di
L + Ri = 0 [148.4]
dt

which is an absolutely degenerate equation of an idealized (L,R)-circuit.

Here the degeneration occurs not because a parameter is small but because it

is large. This confusion disappears if, instead of the parameter C, the capac-
1

ity, we use the elastance k = C as a parameter. It is convenient, for this

reason, to consider parameters as parasitic if they are small or if the corre-

sponding terms in the differential equation are small. The first condition is

merely a definition, whereas the second condition specifies the range in which

a small parameter can be neglected.

149. INFLUENCE OF PARASITIC PARAMETERS ON THE STATE
OF EQUILIBRIUM OF A DYNAMICAL SYSTEM

Consider a system with several degrees of freedom expressible by the

differential equation
(n) (n -i)

aox (n + alx n + ** + an-_z + an_l + azn = 0 [149.1]
re dnx

where x ( d , and so on. The corresponding characteristic equation is

ao n + ax- + + a,- 2 n-1X + an = 0 [149.2]

The equilibrium is stable if the real parts of the roots of [149.2] are nega-

tive, which can be ascertained by the well-known criteria of Routh-Hurwitz:

As was previously stated, we never know the exact form of the differential

equations in a physical problem because of a number of parasitic parameters

either entirely unknown or known only approximately.

Let us assume that Equation [149.1] is a degenerate one derived from

some other equation describing more correctly the behavior of the system by

taking into account a parasitic parameter a. There are two ways in which this

parasitic parameter may appear, depending on whether it is of the "inductance"

type or of the "elastance" type.
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If it is of the inductance type, the non-degenerate equation will be

(. + i) (n) (ta-1)
ac + aox + az -  + + an,_ + ax = 0 [149.3)

If it is of the elastance type, it will be

aox + ax + - - - + an,_- + ax + afz dt = 0 [149.4]

Differentiating this equation, we get

aox(n + ax(n) + + an_- + anx + ax = 0 [149.5]

For both types of parasitic parameter the order of the original differential

equation has been raised by one unit. The corresponding characteristic equa-

tions are

a,,n + ao X+ an-1 + * + a,_ + a = 0 [149.6]

ao n+1 + al + a 2  + +anA + a =0 [149.7]

They now have (n + 1) roots, whereas the original characteristic equation

[149.2] had only n roots. Since a is small, by our assumption, the old n

roots change but little owing to the appearance of the new root, and we may

neglect this change. The matter hinges, therefore, on the new root X n +1.

We can write Equation [149.2], in terms of its roots, as

ao(X - X,)( - X2) . . . (X - Xn) = 0 [149.8]

The new characteristic equation [149.6] of the "parasitic inductance" type

can accordingly be written as

a(A - A)(A - A2) ( - Xn)(XA - n+) a[ A+
-o

+ a1 n-1 + + anI + a n ](X - X+ 1) [149.9]

Expanding the rignt-hand side of this equation and identifying it with Equa-

tion [149.6], we get

Sa°- [149.10]

Applying a similar argument to Equation [149.7], we obtain

Xn+1 = a [149.11]
an

The sign of the new root n +1 indicates its effect on the stability of equi-

librium. The general integral of the new system is

x = Ciet + C 2 et + " + C ne t Cn+e n+

o4ill-i1

[149.12]



If the conditions of stability for the original degenerate equation [149.1]

are fulfilled, the stability of the new equation [149.3] or [149.5] will de-

pend solely on the new root , +1 . If this root is stable, that is, if its

real part is negative, the equilibrium will still be stable. If, however, the

root A,, + is unstable, the non-degenerate system will be unstable although

the corresponding degenerate system is stable. For a complete discussion, one

must apply the Routh-Hurwitz criteria, as usual.

In practical problems the existence of parasitic parameters is gen-

erally unknown; still less known is the magnitude of such parameters. For

these reasons in a complicated physical problem one is never certain about

the actual conditions of stability. This is why one occasionally observes

somewhat puzzling departures from theoretical predictions based on a simpli-

fied study of a system expressed in terms of differential equations with'known

parameters.

Conclusions obtained from the simple discussion given above may ap-

pear to some extent paradoxical. Thus, for instance, if the parasitic param-

eter is of the "inductance" type, see Equation [149.10], the new root X,,+
is larger as the parasitic parameter a is smaller. If, however, it is of the

"elastance" type, see Equation [149.11], the magnitude of the root XA,+ is

proportional to a.

The rather erratic "floating" of a system around its theoretical

position of equilibrium can sometimes be traced to the effects of parasitic

parameters, as we shall see from a few typical examples in the following

sections.

150. EFFECT OF PARASITIC PARAMETERS ON STABILITY OF AN ELECTRIC ARC

The question of the stability of an electric are was the subject of

considerable controversy in the past (19) (20). In Section 21 this matter was

investigated in detail by means of Liapounoff's equations of the first approx-

imation on the basis of a differential equation with finite parameters L, C,

and p. The behavior of the arc is far more complex if some of these param-

eters are small, a condition which results in a degenerate form of the dif-

ferential equation describing the process.

Using the notation of Section 21, we recall that the differential

equations are

di dV E - V - Ri
L - V - #(i); C [dV50.1dt dt R

where i is the are current, V is the potential difference across the capaci-

tor, and 0(i) = Va is the non-linear characteristic of the arc, see Figure

150.1. As was explained in Section 21, there are either three equilibrium
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R L V

E-Ri=V

B
E C A Va (i)

V Vo A

11 1
Figure 150.1 3

points (Points 1, 2, and 3) or one such o

point (Point 3), as shown in Figure Figure 150.2

150.2, depending on the orientation of

the straight line E - Ri with respect to the characteristic 0(i).

It was shown that for small departures, v of voltage and j of arc

current, from the corresponding equilibrium values, the equations of the

first approximation are

dv v j dj v p
dt RC C dt L L[150.2]

where p = '(io) is the slope of the tangent to the characteristic 0b(io) at

the point i = io. The characteristic equation of the system is

2+( + + 1 + = 0 [150.31]
RC L LC R

When there are three points of equilibrium, it is observed that Point 1 corre-

sponds to p = 0'(io) > 0. This point is always stable because the real parts

of the roots of Equation [150.3] are negative. It is, therefore, either a

stable nodal, or a stable focal, point according to whether the roots are real

or conjugate complex. At Point 2 the equilibrium is unstable because p < 0

and, moreover, Jpl > R. This point, therefore, is a saddle point. Point 3 is

a point of stable equilibrium because, although at this point p < 0, IpJ < R.

Having recalled these conclusions of Section 21, we propose to in-

vestigate now what happens to these various conditions of equilibrium when

the system undergoes a degeneration, that is, when one of the two oscillatory

parameters L and C approaches zero. We may distinguish two cases of degenera-

tion, namely, C-degeneration when C - 0 and L-degeneration when L + 0.

In order to investigate the C-degeneration, it is convenient to

write Equation [150.3] as

Ck + ( + X + (R + p) = 0 [150.4]CX R L LR
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For the investigation of the L-degeneration we will write it as

LX2 +( + p)X + (R + p) = 0 [150.51

In this manner we shall be able to use the conclusions of Section 128. Putting

C = 0 in Equation [150.4], we obtain

= R + p [150.6]L

Putting L = 0 in Equation [150.5], we have

1
S- CR (R + p) [150.7]

CRp

Let us consider the equilibrium at Point 2 of Figure 150.2. It is

observed that in the C-degeneration this point is still unstable. In the L-

degeneration, it is stable. A considerable controversy existed on this subject

in the technical literature before this question was completely understood.

The following explanation was suggested by S. Chaikin (20) (21).

Let us consider the characteristic equation

a 2 + bX + c = 0 [150.8]

with a > 0 and c < 0, which characterizes a saddle point; see Section 18. We

can define saddle points as positive when b > 0 and as negative when b < 0.

In the case of a-degeneration, a positive saddle point gives tise to a posi-

tive root and, hence, to unstable equilibrium. If, however, the saddle point

is negative, the degenerate system has stable equilibrium at this point. Thus

the a-degeneration reverses the stability at Point 2 of Figure 150.2. Since

in both cases Point 2 corresponds to a saddle point of the system, we conclude

that the only way to obtain stability under this condition is to have the rep-

resentative point follow a stable separatrix.* If, however, it follows the

stable separatrix, there exists a fixed relation between x and y = i in the

phase plane. But this is precisely what happens in a degenerate system de-

scribed by a differential equation of the first order, see Equation [128.3].

The condition of degeneration thus imposes this singular trajectory, the only

one which is stable in the neighborhood of a saddle point. In this case,

therefore, a threshold exists similar to that which exists for the asymptotic

motion of a pendulum approaching a point of unstable equilibrium, see Section

4, Case 3; such a case is never obtained in practice since there exist no

absolutely degenerate systems, that is, systems in which a = 0.

* Only in a purely theoretical case when the motion of the representative point takes place along the

stable separatrix or asymptote of a saddle point, may the latter be considered as a stable singularity.

If the actual motion of the representative point occurs in the neighborhood of this theoretical motion,
it may appear that the saddle point is a stable singularity, at least for a limited time. In view of

this, one could characterize the saddle point as an almost unstable singularity.
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For practical purposes, if precautions are made to reduce the para-

sitic parameter to a very low value, the representative point will follow a

trajectory very closely to the stable separatrix so that one has the impres-

sion that the phenomenon would ultimately "settle" at Point 2 as if it were a

point of stable equilibrium. In reality, sooner or later the representative

point will depart from this point as a result of accidental disturbances.

By a similar argument one finds that Point 3 of stable equilibrium

for a non-degenerate system may become unstable in the case of L-degeneration,

as follows from Equation [150.1] in which p < 0 and Ipl < R.

Point 1 is stable both for the non-degenerate and the degenerate

systems. It is thus seen that the assumption of absolute degeneration may

lead to conclusions at variance with experimental facts as far as the ques-

tion of stability is concerned.

151. EFFECT OF PARASITIC PARAMETERS ON STABILITY OF RELAXATION OSCILLATIONS

As another example of the same sort, we shall investigate the behav-

ior of the circuit shown in Figure 135.1, taking into account the presence of

the small parasitic inductances L and L' shown in Figure 151.1. Kirchhoff's

equations for this circuit are

dl di 1 [151]
I + i = Ia; L- + RI - ri - Ld t  Cidt =0 151.1

Moreover, Ia = 0(kri) as before. Elimination of Ia and I between

these equations results in the equations

di Ro(kri) - (R + r)i- V dV i
dt L + L' - Lkr'(kri) ; dt [151.2]

The conditions of equilibrium are obviously i = 0 and RO(O) - V = 0. On the

r 1

L'

Figure 151.1
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other hand, for small departures from equilibrium, we can write

(kri) = 0(0) + krio'(0) + . . .

Limiting the expansion to the first term and noting that 0'(0) = S,

Liapounoff equations of the first approximation are

di 6. V
- _ --

dt y Y

dV i
dt C

where

6 = r + R(1 - Skr) and = L' + L(1 - Skr)

The characteristic equation of the system [151.3] is

2 6 1
2 + -6X + 1 = 0

Y yC

and its roots are

-6+ 62 4

X1,2 - 2C

Figure 151.2

For an absolute degeneration,

equation [151.3] by y, one has di + V=

tion gives

For y < 0 the roots are

real and of opposite sign; hence, the

singularity is a saddle point. For

y > 0, the singularity is either a

nodal point or a focal point, depend-

ing on whether the roots are real or

conjugate complex. If they are con-

jugate complex, with 6 > 0, the sin-

gularity is stable; with 6 < 0, it is

unstable. The distribution of singu-

larities is shown in Figure 151.2,

which is the same as Figure 18.1 with

the exception that now we make a dis-

tinction between "positive" and "neg-

ative" saddle points as was explained

in Section 150.

L = L' = = 0. Multiplying the first

0, that is, i = -. The second equa-
do

dV V

dt 6C [151.71

The point of equilibrium V= R(0) is the same as in the non-degenerate sys-

tem. The equilibrium is stable for 6 > 0 and unstable for 6 < 0. The points

of stable equilibrium are indicated by solid points on the positive axis of

ordinates and those of unstable equilibrium by circles on the negative axis

the

[151.3]

[151.4]

[151.51

[151.6]

a
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of ordinates. It is seen that the region of stable equilibrium is localized

in the region of "negative" saddle points and that of unstable equilibrium in

the region of "positive" ones. It was shown, however, in the preceding sec-

tion that such stability is of theoretical interest only, because it is impos-

sible in practice to prescribe the initial conditions accurately enough to

make the representative point follow the stable separatrix, Just as it is im-

possible to impart to a pendulum a velocity Just sufficient to produce An

asymptotic motion. Moreover, no physical system is completely degenerate, but

is only quasi-degenerate.

The situation is still further complicated by the fact that stabil-

ity conditions are influenced not only by the existence of parasitic param-

eters but also by their relative importance. In order to show this, assume,

for instance, that L * 0, L' = 0, 1 - Skr < 0, but R is sufficiently small to

render 6 = r + R(1 - Skr) positive. In such a case the equilibrium is unstable

for any value of L, however small, because the real part of the roots is posi-

tive, that is, 6 > 0 and 7 < 0. In a degenerate system, where L = L' = 0, the

equilibrium is stable, however, as follows from Equation [151.7]. Since any

physical system is only quasi-degenerate, we conclude that the equilibrium is

unstable in this case.

If we consider now the second case, when L' * 0, the situation is

different. Let us assume, as previously, that 1 - Skr < 0. It is obvious that,

by giving L' a suitable value, the quantity y = L' + L(1 - Skr) can be made

positive and since 6 = r + R(1 - Skr) is also positive, as previously assumed,

it follows from Equation [151.6] that the equilibrium is stable. Hence, the

equilibrium which was unstable for L * 0, L' = 0 becomes stable for L = 0,

L' * 0. Thus the change from stability to instability depends here on the

ratio L/L' of the parasitic parameters.

Since in practice one is. seldom sure of the existence of parasitic

parameters, much less of their relative values, the predetermination of sta-

bility conditions for a circuit of this kind becomes altogether meaningless.

It is likely that floating, erratic excitation and similar phenomena still

little explored can be explained on this basis.

To sum up the results of this analysis, it can be stated that, in

general, the effect of parasitic parameters is negligible in practice unless

the system happens to be in the neighborhood of a branch point of equilibrium.

If the system is in such a neighborhood, even a small "cause" may exert an

appreciable "effect" on the system, and its behavior then becomes entirely

unpredictable.
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Gaponow, III 100-101
Gauss's theorem, I 77
Generating solution, I 86 II 7-10, 12-13, 15, 18-1

24, 26-27, 38 47-4, 50, 56, 65, 89, 102, 101
III 41, 45, 78

amplitude of, II 12
definition of, II 7
of Poincar6, III 102

Geometrical analysis of existence of periodic solu-
tions, I 105-115

Geometrical definition of stability, I 41

Geometrical theory of limit cycles, I 63-86

Gorelik, III 126-127
Graphical method of topology of trajectories, I 25-
Gylden, II 3
method of, II 75

Half-stable equilibrium, I 51
Half-stable limit cycle, I 70
Half-trajectory, I 69-70, 78-79
Hard self-excitation, I 74, 99; II 32, 41, 44, 69;

III 72, 83, 91; IV 46, 49
condition for, II 31-32
definition of, I 71
example of, I 87
subharmonic resonance of order one-half for,

III 88-91
Harmonic Balance of Energy, Principle of, II 99,

104-105; III 38, 49, 53, 62
Harmonic motion, I 106

Harmonic oscillator, I 86; III 128; IV 48
differential equation of, I 7
motion of, I 86
non-dissipative, I 23

Harmonic solution of linear equation, II 33
Harmonics, III 28-29, 35, 42, 53-54, 62, 66

combination, III 25-26, 28, 38, 46
of current, III 32
of frequencies, III 48

Heegner's circuit, IV 34-36

Helmholtz, III 24
Hertz, I 5
Heterodyning, III 100 (see also Beats)
Heteroparametric excitation, III 107-108, 112, 115,

125-126
conditions of, III 108, 123

Heteroparametric excitation - continued
dependence on frequency and phase of parameter var-

iation, III 117-121
of dissipative system, III 121-123
principal features of, III 119-121

Heteroparametric generator, III 108
Heteroparametric machine of Mandelstam and Papalexi,

III 124

Heteroparametric self-excitation, III 116

Heteroparametric oscillations, conditions for self-
excitation of, III 120

Heteroperiodic excitation, III 50, 107-108
absence of, III 51

Heteroperiodic frequency, III 49-53, 100-101
Heteroperiodic oscillations, III 53, 87, 90-92, 97,

102
definition of, III 47
existence of, III 47-52
possibility of, III 58
stationary, III 100
synchronized with autoperiodic oscillation, III 55

Heteroperiodic solution, III 85-86, 96
Heteroperiodic states, III 96

condition of, III 57
of non-linear systems, III 57
stability of, III 57

Heteroperiodic variables, III 50
Hill equation, III 113-114

definition of, III 109

Hill-Meissner equation, III 114,115, 117
topology of, III 114-117
trajectories of, III 114, 117

"Hunting," I 101-102

Hurevicz, Prof. W., I 6; III 82

Hurwitz; see Routh-Hurwitz

Huygens, III 93
Hysteresis, III 61

of oscillation, II 27-28
of resonance, III 72

Hysteresis cycle, II 28

Improved first approximation, II 76-80, 90, 98;
III 46-47

application of, II 80-85
equations of, III 40

Impulse-excited oscillations, IV 4, 7, 15-16, 43
Impulse-excited oscillator, phase trajectories of,

IV 53-55
Indices

of Poincar6, I 75-77
theory of, I 75-78

Index
of modulation, III 123

critical value of, III 64
of singularities, I 76-77, 117; III 97
of stepwise modulation, III 115
of trajectory, I 76

Instability, regions of, I 3
"Introduction to Non-Linear Mechanics," I 3; II 1;

III 55
Island of trajectories, I 30-32, 62, 119, 128-129

Isochronism, condition of, I 42
Isochronous motion, I 42; II 12

Isochronous oscillations, II 55-56, 68, 105
Isochronous system, II 37; III 17
Isoolines
application of method of, I 108
definition of, I 20
equation of, I 121
method of, I 20-21, 105, 113

Jacobian, II 6
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Jump, III 65, 72-73, 91
discontinuous, II 32; IV 6, 12, 15, 21-22, 24, 28,

32-33, 36, 41-42, 45-46
quasi-discontinuous, III 72; IV 10, 29

Kaden, III 104

Kaidanowski, IV 40, 42

Kaufmann's criterion for stability of equilibrium,
I 61

Kennard, Prof. E.H., I 6

Kryloff and Bogoliuboff, I 2-3, 67; II 1, 3, 47,
75-76, 100

analytical method of, I 4
argument of, III 60
condition of self-excitation, III 64
method of equivalent linearization of, II 3, 75, 99
notation of, III 6, 15
quasi-linear method of, III 83
quasi-linear theory of, I 4; II 100, 110; III 1, 10,

83, 94
theory of first approximation of, II 49, 52-54, 75;

III 10, 41, 75
treatise of, III 3, 40, 55

Lagrange
method of variation of constants of, II 3, 49, 99
theorem of, 1 29

Lagrangian equation, III 126-127
Langmuir, I 5
LeCorbeiller, Ph., I 114; IV 1
Lefschetz, Prof. S., I 4, 6; II 49
"Les m6thodes nouvelles de la m6canique c6leste," I 2
Levenson, M., I 6

Levinson, N., I 70, 105, 108-109; IV 2
Liapounoff, I 4; II 39

criteria of stability of, I 48-49; III 63-64
application of, I 49-55

equation of first approximation of, I 114; II 42,
45; Iv 60, 64

method of, I 49, 56, 105
stability in sense of, I 40-42, 48-61; II 21; III 78
theorem of, I 3, 29, 49, 51-55, 61

advantage of, I 55
proof of, I 49, 51-55

treatise of, II 27
Lienard, I 105; II 47; IV 2

analysis of, I 4
approximation method of, I 111
conditions of Cartan-, II 48
cycle of, IV 38-39
equation of, I 107, 109-110
method of, I 106-108
plane of, I 107-115

limit cycles in, I 113-115
qualitative analysis of, IV 38
theory of, I 107

Limit cycle, I 90-92 II 35, 38, 43, 48, 65, 94-95,
100; 11I 54, 78, 96-97

amplitude of, II 32
analytical examples of, I 62-66
bifurcation of, I 87
branch points of, I 88
coalescence of, I 72-73; II 32
condition for stationary oscillation on, II 66
definition of, I 23, 62
degenerate, I 70
disintegration of, I 87
equation of, II 46
existence of, I 99; II 47-48, 64, 66-69, 90-95;

III 100
condition for, II 35, 39, 42, 45, 65, 73, 93
criteria for, 1 75-77
proof of, I 79

geometrical theory of, I 63-86
half-stable, I 70
in case of polynomial characteristic, II 72-74
in clock, 1 67-68
in Lienard plane, I 113-115
in Van der Pol plane, I 113-115
inwardly stable, I 70

Limit cycle -
motion on, II 37
nature of, I 99
of first kind, I 125, 130

definition of, I 116-117
of Poincar6, I 62-86
of second kind, I 123, 125, 129-130

definition of, I 116-117
of thermionic generator, II 24-25
outwardly stable, I 70
physical examples of, I 66-68
piecewise analytic, IV 28, 45-46, 49, 55
possibility of, II 63
properties of, I 75, 105
representation of, II 37
stability of, I 62, 64-66, 68-73, 75, 85, 93-94,

98-99, 102; II 27, 31-32, 35-37, 39, 41, 43-45,
66, 69-72; III 97, 101

stable, IV 35, 37, 55
systems with several, II 66-69
theorem of, I 72-75; II 71'-72
theorem of stability of, I 70
topology of trajectories in presence of, I 68-75

Lindstedt, II 3
method of, I 5; II 76
method of Gylden and, II 75

Linear approximation, I 1, 22, 100
Linear circuit

characteristic equation of, III 21
theory of, III 4-7, 11

Linear damping, II 59-62
Linear differential equation, I 1

Cauchy's theorem of existence of, I 2
with constant coefficients, I 1

Linear dissipative circuit with constant parameters,
III 10

Linear equation, I 80; II 2-3, 5, 45, 52; IV 27, 51
approximate, I 100
canonical form of, I 42-44
equivalent, II 101-102
harmonic solution of, II 33
Mathieu, III 124
Mathieu-Hill, III 108
of first approximation, I 49
system of, I 83
with constant coefficients, I 1

Linear parameter, III 17
Linear resonance, III 1, 69

Linear system, I 23, 28, 67; II 4; III 27, 36
phase trajectories of, I 7-23
Routh-Hurwitz theorem for, I 3
with several degrees of freedom, III 30

Linearized differential equations, I 67, 87
Linear dissipative system with constant parameters,

III 10
Linearized equation, I 67, 87, 100

equivalent, II 110

Linearized motion, I 27
Lochakow, I 4; IV 25, 29

Ludeke, III 73

Mandelstam, I 2, 4; III 113
conditions of, IV 15-16, 21, 24, 27, 32, 39, 41-42,

57
Mandelstam and Papalexi, III 103, 107-108, 124, 129

conditions of stability of, III 82
discontinuous theory of relaxation oscillations of,

IV3
heteroparametric machine of, III 124
method of, III 41, 75
school of, I 4; III 1, 75, 88
theory of, III 1

Marconi, I 5
Mathieu equation, III 109-110, 112-114, 124, 127-128

definition of, III 08
linear, III 124
parameters of, III 127
stable and unstable regions of, III 111-112
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Ia-hieu function, III 109, 113
1lathieu-1ill equation, III 108-109, 113-114, 124-125
linear, III 108
stability of, III 113
subharmonic resonance on basis of, III 125, 129

Maxwell, theory of, I 5
Mechanical system, I 99, 124; III 7-10; IV 37

differential equation of, III 9
parameter of, IV 37
self-excited oscillations of, I 99-102
stability of, I 102

Meissner, III 114 (see also Hill-Meissner equation)

Melde, III 128
experiment of, III 107

Migulin, III 129
Modulation

critical value of index of, III 64
index of, III 123
index of stepwise, III 115

Mller, III 93
Motion

aperiodic, I 3, 36, 48
aperiodic damped, I 106

equation of, I 14
phase trajectories of, I 18-19

asymptotic, I 3, 28, 30-31, 36
definition of, I 16
of pendulum, I 16; IV 62

asynchronous, I 125
damped oscillatory, equation of, I 13
differential equation of, I 11
discontinuous periodic, IV 3
harmonic, I 106
in neighborhood of equilibrium, I 40
in neighborhood of focal point, I 13
in vicinity of equilibrium point, I 29
in vicinity of saddle point, I 26
isochronous, I 42; II 12
laws of, I 2-3
linearized, I 27
Method of Small, I 1, 66
non-isochronous, II 38
non-stationary, I 40
of conservative system, I 42
of elastically constrained current-carrying conduc-

tor, I 34-37
of harmonic oscillator, I 86
of pendulum, I 14-15, 29-30, 100, 118, 123
of representative point, I 10
of rotating pendulum, I 37-39
of synchronous motor, differential equation of,

I 126
of system with one degree of freedom, I 82
on limit cycle, II 37
oscillatory dan1ped, I 48, 106

phase trajectories of, I 16-18
periodic, I 3, 26, 31, 39, 41-42, 62-63, 77-78, 85,

105
discontinuous, IV 3
in conservative system, I 62-63
stability of, I 82-86

periodic stationary, I 63
quasi-isochronous, frequency of, II 83
stable, II 21
stability of, I 24, 41-42, 85; II 21; III 111-112,

125
in neighborhood of singular point, I 40-41
in vicinity of critical value of parameter,

I 33-34
in vicinity of equilibrium point, I 24, 26
of harmonic oscillator, I 86

stationary, I 23, 40-41; II 14, 24; III 54
stability of, II 27; III 110

stationary periodic, I 61; IV 55
uni-dimensional real, I 8
unstable, I 28-29, 37

equation of, I 13
phase trajectories of, I 14-16

M~ltiperiodic system
equivalent linearization for, III 26-30
equivalent parameters of, III 27
resonance in, III 23

Multiply degenerate system, IV 30-36

Multivibrator
of Abraham-Bloch, IV 30-34
RC, IV 22-24

Negative criterion of Bendixson, I 75, 77-78; III 97
Negative damping, I 105; II 44-45, 63, 65

definition of, I 21
examples of, I 21-22

Nodal point, I 18-19, 22, 45-46, 59, 69, 76-77, 81-82,
101-103, 114 127; III 97, 99, 101; IV 17, 27,
31, 35, 61, 64

definition of, I 13
criterion for existence of, I 13
stability of, I 13, 45, 47-48, 58, 60-61; II 68;

III 63
theorem for occurrence of, I 45

Non-conservative system, I 17, 23, 106
closed trajectories of second kind in, I 121
cylindrical phase trajectories of, I 119-121
existence of periodic solutions in, II 90-95
with non-linear variable damping, II 63-65

Non-degenerate equation, IV 59
Non-degenerate system, IV 63-64
Non-dissipative circuit, differential equation of,

III 115
Non-dissipative harmonic oscillator, I 23
Non-dissipative system, III 20
Non-isochronous motion, II 38

Non-isochronous oscillation, II 57-58

Non-isochronous system, II 106; III 23
Non-linear circuit, self-excitation of, I 1

Non-linear conductors, I 1; II 108-109

Non-linear conservative system, I 23, 128
behavior of, I 32-33
definition of, I 24
examples of, II 56-58
general properties of, I 24
phase trajectories of, I 24-39
theory of first approximation applied to, II 55-56
with cubic term, II 88-89

Non-linear coupling, III 127
autoparametric, III 127

Non-linear damping, I 5
Non-linear differential equation, I 1, 24, 63, 66, 75,

85; II 1, 3, 7, 67, 82, 100; III 24; IV 37, 51
conditions for periodicity of solutions of, II 4-19
exact solutions of, II 1
in dimensionless form, III 75-77
of dissipative type, II 45
of oscillating circuit, II 28
of second order, II 24
of self-excited oscillations, I 66
of torsional oscillation of shaft, II 57

Non-linear dissipative damping, II 58-62, 106-107
Non-linear dissipative system, II 48

Non-linear equation, I 1, 118; II 5, 47-48, 108
of oscillation, II 58
stability of, I 50, 52

Non-linear equivalent parameter, III 29

Non-linear mechanical vibrations, I 1

Non-linear non-conservative system, I 23, 40, 63, 105
autonomous, I 62
higher approximations for, II 89-95

Non-linear oscillation, I 100; II 3, 99
self-excited, II 63

Non-linear oscillatory system, III 24

Non-linear parameter, II 109; III 17, 61, 106

Non-linear resonance, I 4; III 1-129
external, III 53-74

stability of III 65, 72
internal, III 36
undamped, III 73

Non-linear restoring force, II 105-109
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Non-linear self-excited oscillations, II 63
Non-linear self-excited system, III 103
Non-linear system, I 23, 42, 55; III 36, 39

autoperiodic state of, III 47
canonical form of, I 52
characteristic equation for, III 20
criteria of stability for, I 3, 55
frequency of self-excited, III 17
heteroperiodic and autoperiodic states of,

III 47-52, 57
periodic solution of, II 4, 6
stability of, I 49, 52
with one degree of freedom, III 30
with several degrees of freedom, III 30-31

Non-linear variable damping, 1 105; II 44-45, 63-65
non-conservative systems with, II 63-65

Non-resonance, III 23, 42
Non-resonant oscillations, III 27
Non-resonant self-excitation of quasi-linear system,

II 19-21

Non-resonant system, III 29, 33, 55
Non-stationary motion, I 40

Ordinary point, I 12-14, 20
definition of, I 11

Ordinary value of parameter, I 32
Oscillating system, experiments with, III 60
Oscillation hysteresis, II 27-28
Oscillations

autoperiodic, III 53, 97, 100, 102
amplitude of, III 102
conditions for stability of, III 58
definition of, III 47
existence of, III 47-52
self-excitation of, III 52
stability of, III 58
stability of stationary, III 56
synchronized with heteroperiodic oscillation,

111 55
synchronous, III 56

combination, III 47
electrical
in circuit containing iron core, II 58
in circuit containing saturated core, II 108

heteroparametric, conditions for self-excitation of,
III 120

heteroperiodic, III 53, 87, 90-92, 97, 102
definition of, III 47
existence of, III 47-52
possibility of, III 53
stationary, III 100
synchronized with autoperiodic oscillation, III 55

impulse-excited, IV 4, 7, 15-16, 43
in stationary state, III 11
isochronous, II 55-56, 68, 105
maintained by periodic impulses, IV 43-55
non-isochronous, II 57-58
non-linear, I 100; II 3, 99

self-excited, II 63
non-linear equation of, II 58
non-resonant, III 27
of conservative system, II 80
of limit-cycle type, IV 43
of pendulum, I 1
of synchronous motor, 1 124-130
quasi-discontinuous, IV 28, 37
quasi-harmonic, II 49
quasi-linear, I 128 II 24; IV 13
frequency of, II 3

relaxation; see Relaxation oscillations
self-excitation of, I 58-59, 66
self-excited; see Self-excited oscillations
stability of, III 36-37, 84, 124; IV 52
stationary, 66-67, 71; III 15, 21, 35, 49, 55, 96

on limit cycle, I166
subharmonic, III 67, 90-92

frequency of, III 88
self-excitation of, III 107

synchronized, stable condition of, III 36
Oscillator

coupled electronic, stability of, II 24
damped, differential equation of, I 16

Oscillator - continued
electron-tube, III 48
harmonic, I 86; II 128; IV 48

differential equations of, I 7
motion of, I 86
non-dissipative, I 23

impulse-excited, phase trajectories of, IV 53-55
Oscillatory damped motion, I 48 106

phase trajectories of, I 16-16
Oscillatory parameter, III 60; IV 5, 56, 61
Oscillatory system, I 68; III 23

non-linear, III 24
resonance of, III 23

Papalexi, I 2, 4 (see also Mandelstam and Papalexi)
Parameter, III 36, 86-87, 98, 103, 111; IV 10, 13
bifurcation values of, I 87
characteristic, III 75
constant, II 67; III 4, 122; IV 55

linear dissipative system with, III 10
constant linear, III 69
critical value of, I 31-35, 39, 87, 97, 104;

II 26-27, 31, 69-70
dissipative, III 21; IV 16
equivalent, II 102-105, 107; III 33-35, 49, 62, 66,

68-69
critical value of, II 100; III 30
definition of, II 100-101; III 38
determination of, II 99-102
non-linear, III 29
of multiperiodic system, III 27

finite, IV 60
fixed, III 81
large values of, I 4, 111-113; IV 2
linear, III 17
method of small, II 1-32
non-linear, II 109; III 17, 61, 106
of circuit, III 14; IV 37
of Mathieu equation, III 127
of mechanical system, IV 37
of system, III 23; IV 46
ordinary value of, I 32
oscillatory, III 60; IV 5, 56, 61
parasitic, IV 7

effect on stationary states of dynamical systems,
IV 56-65

existence of, IV 60
influence on equilibrium of dynamical systems,

IV 58-60
periodic variation of, III 60, 74, 108
small values of, I 85, 128; II 38, 50, 53; III 38,

40, 48, 79; IV 2, 58
variation of, I 91-92; III 36, 62, 107, 117, 121,

124-125, 128-129; IV 35
Parametric excitation, I 4; III 1, 60-65, 107-129

definition of, III 60
of critically damped or overdamped circuit, III 123

Parametric self-excitation, III 113
Parasitic capacity, IV 57
Parasitic parameter, IV 7
effect on stationary states of dynaical systems,

Iv 56-65
existence of, IV 60
influence on equilibrium of dynamical systems,

Iv 58-60
Pendulum, III 112; IV 65

as example of non-linear conservative system,
11 56-57

asymptotic motion of, I 16; IV 62
differential equation of, II 56
elastic, III 126
energy of, I 26
frequency of, III 94
Froude's, I 21-22, 67; II 44-46; IV 37
mathematical, IV 46
mechanical, III 94
motion of, I 29-30, 100, 118, 123
in neighborhood of unstable equilibrium, I 14-15

of clock, IV 44
oscillations of, I 1

Periodic coefficients, III 81, 114
differential equations with, III 2, 56, 74, 108-112,

124-125, 127
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Periodic impulses, oscillation maintained by, IV 43-55
Periodic motion, I 3, 26, 31, 39, 41-42, 62-63, 77-78,

85, 105
discontinuous, IV 3
in conservative system, I 62-63
stability of, I 82-86

Periodic non-resonant excitation, III 41-44

Periodic solution, I 66, 79, 82, 84, 86, 122-123;
II 1-2, 7, 12, 18-19, 25-26, 95; III 125

analytical, IV 3
condition for stability of, II 80-82
existence of, I 105-115, 121; II 10-11, 86, 90

condition for, II 2, 18
geometrical analysis of, I 105-115
in non-conservative system, II 90-95
proof of, I 105

of degenerate system of first order, IV 19
of non-linear problem, II 6
of non-linear system, II 4, 6
of quasi-linear equation, II 87; III 78-80
stability of, II 19-24

Periodicity, I 116; II 2, 13
condition of, I 122, 129; II 4-19

Perturbation, II 50; III 70, 80, 125
in phase angle, III 63
of amplitude, III 63

Perturbation method, II 15, 19

Perturbation term, II 51
Perturbation variables, III 64

Phase, total, II 54, 99-100; III 27, 29, 31, 33, 35,
43

Phase angle, I 7; II 4, 25, 38, 82; III 62-65, 120
critical, III 120
equilibrium, III 106
of ripple, III 118-119
perturbation in, III 63

Phase diagram, I 26, 30; III 119; IV 53

Phase line, IV 8, 17, 21, 24-25, 28, 33, 41-42

Phase plane, I 7-8, 10-11, 14, 16-17, 21-22, 24-30,
32, 36, 43, 45-47 , 2-63, 68-69, 71-72
74-75, 77, 80o 82, ,105, 116-117, 11?;
11 6-7, 1 , 35-3 40-41, 64; III 7 , 96,
100-101, 114, 116, 118, 122; IV 2, 5-8, 12,
14-15, 17, 25-26, 28-29, 33, 43-46, 53, 62

definition of, I 7-8
representation of phenomenon in, III 96-98

Phase space, I 2, 8, 10, 26; IV 8, 17, 21
cylindrical, I 116-130
uni-dimensional, IV 8, 21

Phase trajectories, I 2-3, 7-23, 40-41, 43, 45-46, 62,
64-66, 68-71, 73-78, 7, 90, 94, 97, 102,
105-107, 109-110, 113-114, 117-11 , 125, 128;
II 33, 35-36, 64; III 78, 96, 101, 112, 116-118,
122; IV 2, 4, 6, 8, 12-14, 17, 19-20, 22, 26-27,
29, 31, 42-44, 46, 48-49, 55, 62-63

analytical, IV 3, 31, 33-34
analytical method of topology of, I 26-29
behavior of, in neighborhood of singularities,

I 12-14
Cauchy's theorem of, I 11, 14
continuum of, I 62, 128; IV 27
continuum of closed, I 12-13, 62; II 6-7
cylindrical

of conservative system, I 118-119
of non-conservative system, I 119-121

definition of, I 8
degenerate, I 12
equations of, I 66, 88, 128
existence of closed, I 21, 108-113, 129
graphical method of topology of, I 25-26
index of, I 76
in presence of Coulomb friction, IV 47-49
in presence of singularities and limit cycles,

I 68-75
islands of, I 30-32, 62, 119, 128-129
of aperiodic damped motion, I 18-19
of Hill-Meissner equation, III 114, 117
of impulse-excited oscillator, IV 53-55
of limit-cycle type, IV 22
of linear system, I 7-23
of non-linear conservative system, I 24-39
.of oscillatory damped motion, I 16-18

Phase trajectories - continued
of second kind, I 121-123, 129
of unstable motion, I 14-16
of Van der Pol equation, III 100
proper, I 12
sink for, I 69, 79
solution of differential equations represented by,

III 2
source of, I 69, 78
topology of, II 37; III 100; IV 26

analytical method of, I 26-29
graphical method of, I 25-26
in neighborhood of singular points, I 25-29
in phase plane, I 29-32
in presence of singularities and limit cycles,

I 68-75
Phase velocity, I 9, 16-17, 24

definition of, I 9

Piecewise analytic curves, III 117; IV 2, 48

Piecewise analytic cycle, IV 22, 24, 42, 45
Piecewise analytic limit cycle, IV 28, 45-46, 49, 55

Piecewise analytic representation of phenomenon, IV'6

Piecewise analytic spiral, III 122; IV 28, 54-55

Piecewise analytic trajectory, III 117; IV 17, 33, 37,
43, 49, 54

Poincar6, H., I 4, 34, 38; II 1, 15; III 1, 54, 79,
96, 107-108

analytical method of, I 4 87, 99, 104-105; II 4-32
bifurcation theory of, I 7-104
classification of singularities according to, I 42,

47
condition of, II 24
criteria of, I 105; II 31
criteria of stability of Liapounoff and, III 63-64
curve of contacts of, I 75
equations of, II 53
expansions of, II 7
functions of, II 13, 35
generating solution of, III 102
indices of, I 75-77
limit cycles of, I 62-86
method of, I 5; II 1-32, 38, 50, 96; III 41, 51, 125

applied to systems with several degrees of free-
dom, II 14

notation of, II 20
quantitative method of approximation, I 2
research of, I 2
rule for ascertaining stability of motion in vicin-

ity of critical value of parameter, I 33-34
theorems of indices, I 76-77
theory of, I 32, 63, 93-94, 117; II 2-3, 7, 28, 35,

41, 44, 66, 75-92, 113, 125-126; III 41, 44,
topological methods of, I 2; II 69
variational equations of, III 80

Poisson, II 49
method of, II 50

application of, II 52

Positive damping, 1 18, 105; II 44, 63

Proper trajectory, I 12

Quadratic damping, II 60-62, 106

Qualitative analysis of Lienard, IV 38

Qualitative methods, II 1

Quantitative method of approximations, I 2-3; II 1-2
advantage of, I 3

Quasi-degenerate equation, IV 11-12

Quasi-degenerate system, IV 10-11, 65

Quasi-discontinuity, IV 39, 43

Quasi-discontinuous jump, III 72; IV 10, 29

Quasi-discontinuous oscillation, IV 28, 37
Quasi-discontinuous relaxation oscillation, IV 35
Quasi-discontinuous stationary relaxation oscillation,

IV 12
Quasi-discontinuous solution of differential equations

of second order, IV 38

Quasi-discontinuous timing of electronic switch, IV 52

Quasi-harmonic oscillation, II 49



Quasi-harmonic theory, II 59
Quasi-isochronous motion, frequency of, II 83
Quasi-isochronous system, III 21
Quasi-linear equation, II 33, 49, 52, 55 58, 66, 80,

85, 89, 96, 99-102, 105; III 65, 66; IV 2, 37
definition of, II 2
of system with external excitation III 41
periodic solution of, II 87; III 76-80
with forcing term, periodic solutions of, III 78-80

Quasi-linear method of Kryloff and Bogoliuboff, III 83
Quasi-linear oscillations, 1 128; II 24; IV 13

frequency of, II 83
Quasi-linear system, II 26-27, 95, 99, 103; III 27,

30, 53
autonomous, III 41
bifurcation theory for, II 26-27
condition of resonance of, III 23
external periodic excitation of, III 41-52
Kryloff-Bogoliuboff theory of, III 41
method of equivalent linearization

applied to steady state'of, III 10-14
applied to transient state of, III 14-19

non-resonant external excitation of, III 46-47
non-resonant self-excitation of, III 19-21
of differential equations, II 14
resonance in, III 23
resonant self-excitation of, III 21-23
self-excitation of, III 41
with several degrees of freedom, III 3-23, 26
with several frequendies, III 37-40

Quasi-linear theory of Kryloff and Bogoliuboff, I 4;
II 100, 110; III 1, 10, 83, 94

Quasi-linearity, condition of, II 29

Rayleigh, Lord, III 93, 103, 107
equation of, II 44-45, 47-48, 65
experiments with oscillating systems, III 60

RC-multivibrator, IV 22-24
RC oscillations in thermionic circuits, I 111
References, I 131-133; II 112-113; III 130-132;

Iv 66-67
Reich, H.J., III 25
Relaxation oscillations, I 68, 128, 130; IV 1-65

definition of, IV 1, 4
discontinuous stationary, IV 12
discontinuous theory of, IV 3, 8-18, 20-22, 25, 29,

56- 7
examples of, I 97, 115
mechanical, IV 37-42
quasi-discontinuous, IV 35
quasi-discontinuous stationary, IV 12
stability of, IV 63-65
theory of, I 4

Representative point, I 8, 10-16, 36, 40, 41, 45, 47,
62, 69, 73, 94, 112, 115, 125; II 36, 38, 40;
III 116-117, 119; IV 6, 13-15, 21-22, 24, 26-28,
32-33, 38, 41-42, 48, 54, 62-63, 65

motion of, I 10
Resonance

external, III 53-74
definition of, III 1

fractional-order, III 53, 55, 57-61, 1-25
in multiperiodic system, III 23
in quasi-linear system, III 23
internal, III 33, 36, 53

definition of, III 1, 31
of order one, III 36-37

linear, III 1, 69
non-linear, I 4; III 1-129

external, III 53-74
internal, III 36
undamped, III 73

of order n, III 75
of oscillatory system, III 23
of quasi-linear system, condition of, III 23
subharmonic; see Subharmonic resonance

Resonance hysteresis, III 72

Resonant self-excitation of quasi-linear system,
III 21-23

Resonant system, III 33, 53-57

Restitution, coefficient of, IV 3, 57
Richardson, Dean R.G.D., I 5-6
Ripple, III 111-112, 121-123

capacity, III 116
frequency of, III 115, 117, 119-120
phase angle of, III 118-119
rectangular, III 114-115, 117; IV 2
timing of, III 114

Routh-Hurwitz
criteria of, II 22; IV 58, 60
theorem for linear system, I 3

Saddle point, 1 23, 28-31, 34-36, 38-39, 41, 46-48,
55-59, 61-62, 76-77, 81- 2, 119, 121, 123, 127;
III 97, 99, 101; IV 17, 27, 31, 35-36, 62, 64

criterion for existence of, I 13
definition of, I 12
example of, I 16
motion in vicinity of, I 26
negative, IV 64-65
positive, IV 64-65
theorem for occurrence of, I 46

Saturation voltage, II 29; III 95
Savart; see Biot-Savart law
Secular terms, II 7, 13, 25, 51, 87

appearance of, II 13
condition for absence of, II 88-89, 92-93
condition for elimination of, II 97
definition of, II 2
effect of, II 49
elimination of, II 3, 75-76, 87-89, 92-94, 97-98
in solutions by series expansion, II 49-52
presence of, II 52

Sekerska, III 128
Self-excitation, I 58-59, 73; II 25, III 30-31, 60,

112, 126
asynchronous, III 51
autoparametric, III 127, 129
autoperiodic, III 50, 52
condition of, I 80, 99; II 39, 70-71; III 16, 18-19,

21, 59, 63-64, 68, 108, 123
critical value of, III 49
disappearance of, I 74
existence of, III 44, 120-121
hard, I 74, 99; II 32, 41, 44, 69; III 72, 83, 91;

IV 46, 49
condition for, II 31-32
definition of, I 71
example of, I 87
subharmonic resonance of order one-half for,

111 88-91
heteroparametric, III 116
lack of, III 37, 43, 46, 90
non-resonant, of quasi-linear system, III 19-21
occurrence of, IV 37
of autoperiodic oscillation, III 52
of autoperiodic state, III 60
of circuit, IV53
of clock, IV 46, 49
of electromechanical system I 99, 102-104
of electronic circuits, I 66
of electron-tube circuit, III 107
of equivalent linearized system, III 30
of heteroparametric oscillation, III 120
of non-linear circuit, I 1
of oscillation, I 58-59, 66
of quasi-linear systems, III 41
of shunt generator, II 71
of simple circuit, III 14-19
of subharmonic oscillations, III 107
of system, II 69; III 86, 90
of thermionic circuits, I 87; II 38
of thermionic generators, I 95-99; II 27-32; III 45
parametric, III 113
point of, III 92
possibility of, III 59, 122; IV 23, 35
prevention of, II 43-44; III 51
resonant, of quasi-linear system, III 21-23
soft, I 72, 99; II 32, 41; III 83, 85, 90, 92; IV 46

condition for, II 30-31; III 51-52
definition of, I 71
example of, I 92, 102
subharmonic resonance of order one-half for,

III 83-87
zone of, III 49
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Self-excited oscillations, 1 66-68, 97, 103; II 41,
44-45, 48; II11 28; IV 1, 35, 55

amplitude of, 1 104
existence of, II 47
frequency of, III 13
non-linear, II 63
non-linear differential equation of, I 66
of electromechanical system, I 99, 102-104
of mechanical system, I 99-102
of non-linear circuit, I 1
stationary, III 13-14; IV 43

Self-excited state, III 12

Self-excited system, III 46, 92
asynchronous action on, III 52
non-linear, III 103

frequency of, III 17
Self-excited thermionic generator, III 45
Separatrix, I 3, 29, 31-32, 35-36, 38-39, 62, 119,

123, 128-129; III 101; IV 62
bifurcation of limit cycles from, 1 87
equation of, I 35-36, 38
of second kind, I 123
stable, I 41; IV 63, 65

Series generator, I 102-104
parallel operation of, I 79-82

Shohat, J.A., I 6; II 2; IV 2, 38
Shottky, I 5
Shunt generator, self-excitation of, II 71
Singular point, I 9, 11-28, 35-38, 40, 49, 51, 64,

69-70, 72, 97, 116-117, 119-120, 123, 127;
II 39, III 54, 96-98; IV 14, 26, 31, 34

classification of, I 42, 47
coalescence of, I 127; III 101-102
coalescence with limit cycles, I 73
definition of, I 11
nature of, III 97
number of, I 31
occurrence of, III 63
of differential e uations, I 17; III 96
stability of, I 38, 91; III 97, 102
topology of trajectories in neighborhood of,

I 25-29, 68-75
Singularity, I 2, 41, 61, 78-79, 121; II 42, 45-46;

III 63, 87; IV 3, 17, 64
almost unstable, I 41; IV 62
classification of, I 42, 47
coalescence of, I 29, , 36-37, 39
distribution of, III 98-102; IV 64
index of, I 76-77, 117; II 97
nature of, III 98-102
of differential equation, I 3, 11
simple, I 29
stability of, I 38, 41, 69, 87, 91-92, 103; II 32,

39, 41; II 100-101; IV 35, 62, 64
criteria for, I 47

transition of, I 58, 88, 91
zone of, I 82

Sink, I 87; III 100
for trajectories, I 69, 79

Smith, O.K., I 70, 105, 108-109

Sommerfeld, IV 40

Source, I 87; III 100
of trajectories, I 69, 78

Stability, I 3, 125, 127
absolute, zone of, I 61
analytical definition of, I 41-42
conditions of, 1 55, 99; II 14; 22-24; III 69-72,

82, 85-87, 89, 97, 99, 113; IV 60
conditional, I 61
criteria of, I 22-23, 33; III 85

applied to non-linear system, I 3, 55
of equilibrium, I 60-61
of singularities, I 47

defined for motion in neighborhood of singularities,
140

definition of, I 40-41
exchange of, I 34, 38
geometrical definition of, I 41
in sense of Liapounoff, I 40-42, 48-61; II 21;

111 78
Kaufmann's criteria of, I 61

Stability - continued
Liapounoff's criteria of, I 48-49; III 63-64

application of, I 49-55
of autoperiodic oscillation, III 58

conditions for, III 58
of coupled electronic oscillators, II 24
of degenerate system, conditions for, IV 17
of electric arc, IV 60-63
of equilibrium, I 33-35, 40-61, 71, 85, 87, 93, 127;

II 35-36, 68; III 106, 110 IV 21, 58-65
according to Liapounoff, I 4-61
Kaufmann's criteria for, I 61
theorems for, I 29

of focal point, I 47-48, 57-60, 88-89, 91-92, 97,
99; 1 31-32, 41-43, 69

of heteroperiodic state, III 57
of limit cycle, I 62, 64-66, 68-73, 75, 85, 93-94,

98-99, 102; II 27, 31-32, 35-37, 39, 41, 43-45,
66, 69-72; III 97, 101

theorem of, I 70
of Mathieu-Hill equation, III 113
of mechanical system, I 102
of motion, I 24, 41-42, 85; II 21; III 111-'12, 125

in neighborhood of singular point, I 40-41
in vicinity of critical value of parameter,
I 33-34

in vicinity of equilibrium points, I 24, 26
of harmonic oscillator, I 86

of nodal oint, I 13, 45, 47-48, 58, 60-61; II 68;
11 63

of non-linear equation, I 50, 52
of non-linear external resonance, III 65, 72
of non-linear system, I 49, 52
of oscillations, III 36-37, 84, 124; IV 52
of periodic motion, I 82-86
of periodic solution, II 19-24

conditions for, III 80-82
of point of equilibrium, III 106
of position of equilibrium, I 9
of relaxation oscillations, IV 63-65
of singular point, I 38, 91; III 97, 102
of singularity, I 38, 41, 69, 87, 91-92, 103; II 32,

39, 41; III 100-101; IV 35, 2, 64
of stationary autoperiodic oscillation, III 56
of stationary motion, II 27; III 110
of stationary state, III 44, 70-71
Poincar6-Liapounoff criteria of, III 63-64
regions of, I 3
Routh-Hurwitz criteria for, II 22; IV 58, 60
threshold of, 1 127

Static friction, IV 48-49
zone of, IV 49

Stationary motion, I 23, 40-41; II 14, 24; III 54
stability of, II 27; III 110

Stationary periodic motion, I 61; IV 55

Stationary self-excited oscillation, III 13-14; IV 43

Stationary oscillation, I 66-67, 71; III 15, 21, 35,
49, 55, 96

on limit cycle, II 66

Stationary solution, I 64; II 14; III 65

Stationary state, III 70; IV 43-44
effect of parasitic parameters on, IV 56-65
of dynamical system, I 40; IV 56-65
of motion, I 23, 67, 69
oscillation in, III 11
stability of, III 44, 70-71

Stationary value, IV 52-53

"Struggle for Life," I 68

Strutt, III 111-114

Subharmonic oscillation, III 67, 90-92
frequency of, III 88
self-excitation of, III 107

Subharmonic resonance, III 75
external, I 4; III 125
for underexcited system, III 87
internal, I 4; III 30-35
of nth order, III 129
of order one-half

for hard self-excitation, III 88-91
for soft self-excitation, II 83-87
for underexcited system, III 87-88

of order one-third, III 91-92
on basis of Mathieu-Hill equation, III 125, 129



Subharmonic resonance - continued
on basis of theory of Poincar6, III 75-92
phenomenon of, III 129

Subharmonic solutions, III 60
Subharmonics, III 24-25
Superregenerative circuit, III 50
"Sur les courbes d6finies par une 6quation diff6ren-

tielle," I 2
Synchronization, III 35-36

of autoperiodic with heteroperiodic oscillation,
111 55

of frequencies, III 104, 106
zone of, III 36

Synchronized oscillations, stable condition of, III 36
Synchronous motor

differential equation of, I 126
oscillations of, I 124-130

System
absolutely degenerate, IV 11, 62
autonomous, IV 44

definition of, I 10
non-linear non-conservative, I 62
quasi-linear, III 41
with one degree of freedom, 1 105

completely degenerate, IV 10
conservative, I 7, 23, 25, 38, 40, 42, 106 128;

II 27, 51, 55, 90; III 19, 114, 127-126
cylindrical phase trajectories of, I 118-119
equilibrium of, I 40
motion of, I 42
oscillations of, II 80
periodic motion in, I 62-63
points of equilibrium in, I 34

degenerate, II 14; IV 60, 62, 65
conditions for stability of, IV 17
of first order, periodic solutions of, IV 19
transition between continuous and discontinuous

solutions of, IV 35-36
with one degree of freedom, IV 19-29

degeneration of, IV 61
dissipative, II 67, 73; IV 45

heteroparametric excitation of, III 121-123
doubly degenerate, IV 17, 33-34
dynamical, I 10-11, 32, 51, 69, 82, 87-88, 107

differential equation of, I 20
equilibrium of, IV 58-60
stationary states of, I 40; IV 56-65

electrical, III 7-10
electrodynamical, I 87
electromechanical

differential equation of, I 117-118
self-excitation of, I 99, 102-104
self-excited oscillations in, I 99 102-104

equivalent linear, II 102; III 33, 36
equivalent linearized, III 66

self-excitation of, III 30
isochronous, II 37; III 17
linear, I 23, 28, 67; II 4; III 27, 36
phase trajectories of, I 7-23
Routh-Hurwitz theorem for, I 3
with several degrees of freedom, III 30

linear dissipative with constant parameters, III 10
mechanical, I 99, 124; III 7-10; IV 37

differential equation of, III 9
parameter of, IV 37
self-excited Oscillations of, I 99-102
stability of, I 102

multiperiodic
equivalent linearization for, III 26-30
equivalent parameters of, III 27
resonance in, III 23

multiply degenerate, IV 30-36
non-conservative, I 17, 23, 106

closed trajectories of second kind in, I 121
cylindrical phase trajectories of, I 119-121
existence of periodic solutions in, II 90-95
with non-linear variable damping, II 63-65

non-degenerate, IV 63-64
non-dissipative, III 20
non-isochronous, II 106; III 23
non-linear; see Non-linear system
non-linear conservative; see Non-linear conservative

system
non-linear dissipative, II 48

System - continued
non-linear non-conservative, I 23, 40, 63, 105

autonomous, I 62
higher approximations for, II 89-95

non-resonant, III 29, 33, 35
of degenerate differential equations, IV 16-18
of equations of first order, I 9
of first order, I 97
of linear equations, I 18, 23, 80, 83
oscillating, experiments with, III 60
oscillatory, I 68; III 23

non-linear, III 24
resonance of, III 23

parameter of, III 23; IV 46
quasi-degenerate, IV 10-11, 65
quasi-isochronous, III 21
quasi-linear; see Quasi-linear system
resonant, III 33, 53-57
self-excitation of, II 69; III 86, 90
self-excited, III 46, 92
asynchronous action on, III 52
non-linear, III 103

triply degenerate, IV 17, 34
underexcited, III 87

subharmonic resonance for, III 87-88
with external excitation, III 41
with external periodic excitation, III 75
with internal resonance, III 33
with more than one degree of freedom, I 75
with non-linear variable damping, II 63-65
with one degree of freedom, I 10, 82; IV 47

conditions of periodicity for, II 4-14
differential equation describing, IV 25-29
motion of, I 82

with several degrees of freedom, II 14
Poincar6 method applied to, II 14

with several limit cycles, II 66-69
with two degrees of freedom, II 14-19; IV 30
with variable damping, I 105

Theodorchik, K., III 103
"Theoretical Mechanics," I 15-16
"Theory of Oscillations," I 3-4, 75; II 1, 3; IV 1
Thermionic circuits, I 101

RC oscillations in, I 111
self-excitation of, I 87; II 38

Thermionic emission, I 5
Thermionic generator, I 5, 73; II 3, 109-111; IV 44

amplitude of oscillation in, I 67
frequency of, II 24-25
limit cycle of, II 24-25
self-excitation of, I 95-99; II 27-32; III 45
condition for hard, II 31-32
condition for soft, II 30-31

self-excited, III 45
Threshold, I 48; III 122; IV 14, 27

critical, I 3, 11; III 46, 125; IV 26
of stability, I 127

Threshold condition, E 82
Topological methods, I 7-130

of Andronow and Witt, III 94
of Poincar6, II 69
of qualitative integration, I 2-4

advantage of, I 2
limitations of, I 3

Topological representation, II 14

Topological structure of trajectories, IV 26

Topological study of trajectories of Van der Pol's
equation, III 100

Topology
of Hill-Meissner equation, III 114-117
of phase trajectories, II 31; III 100; IV 26

analytical method of, I 26-29
graphical method of, I 25-26
in neighborhood of singular points, I 25-29
in phase plane, I 29-32
in presence of singularities and limit cycles,
I 68-75

of Van der Pol plane, II 35-38, 41
Trajectories; see Phase trajectories
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Transition of singularities, I 58

Underexcited system, III 87
subharmonic resonance for, III 87-88

Uni-dimensional phase space, IV 8, 21

Uni-dimensional real motion, I 8

Uniqueness, Cauchy's theorem of, I 24

Van der Mark, I 68

Van der Pol, I 1, 4, 20-21, II 47; III 93-94, 97, 104,
111-113; IV 1

abbreviated equation of, II 54; III 44
analytical method of, I 4
differential equation of, III 94-96
equation of, I 79, 85, 97, 103, 105, 108, 111, 113;

II 27, 41, 47, 53, 63-64, 66, 83, 85; III 45-46,
100; IV 2-3

phase trajectories of, III 100
method of, II 33-48
plane, I 113-115; II 33, 35-38, 41

limit cycles in, I 113-115
solution, II 63; III 100-102
theory of, I 1; II 44, 66; III 44

Van der Pol - continued
theory of performance of heart, I 68
variables of, II 35, 37-38

Variable damping, I 105; II 47, 82-83
Variation of constants, method of, II 3, 49, 99
Variational equations, I 83; II 19; III 35-36, 63-64,

70
of Poincar6, III 80

Velocity field, I 11
Vincent, III 93
Vlasov, I 124-125, 130

theory of, I 125
Volterra, V., examples of limit cycles, I 68
Vortex point, I 23 26-31 33-36, 38-39, 41, 62-63,

76, 119; IV t, 48
definition of, I 12

Weaver, Dr. W.W., I 6
Witt, I 4; II 14; III 94, 126-127 (see also Andronow

and Witt)

Wronskian, III 109
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